
Laboratorij za analizu teksta i inženjerstvo znanja
Text Analysis and Knowledge Engineering Lab
Sveučilište u Zagrebu, Fakultet elektrotehnike i računarstva
Unska 3, 10000 Zagreb, Hrvatska

Zaštićeno licencijom
Creative Commons Imenovanje-Nekomercijalno-Bez prerada 3.0 Hrvatska
https://creativecommons.org/licenses/by-nc-nd/3.0/hr/

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

BSc THESIS No. 5328

Computational Analysis of the
Similarity of Math Word Problems

Doria Šarić

Zagreb, June 2017

I would like to thank my mentor, Jan Šnajder, for all the patience, good advice and

putting me back on the right path when I felt a bit lost.

A thank you to PhotoMath for providing me with this idea and a chance to solve it.

Many thanks to my family, Ines and Luka for all the bad jokes during this last semester.

iii

CONTENTS

1. Introduction 1

2. Dataset 3

3. Model 7
3.1. Classifiers . 7

3.1.1. Support Vector Machine . 7

3.1.2. LinearSVC . 8

3.1.3. Naive Bayes . 8

3.1.4. Random Forest . 9

3.2. Mapping Solver Trees to Feature Vectors 9

3.3. Kernel Methods . 12

3.3.1. Tree Kernel Based on Converting Trees into Strings 13

3.3.2. Tree Kernel Based on Subpaths 14

4. Results 16
4.1. Mapping trees to feature vectors . 17

4.2. Tree Kernel Method Based on String Similarity 20

4.3. Tree Kernel Method Based on Subpaths 22

4.4. Shortly on Results . 22

5. Conclusion 23

Bibliography 25

iv

1. Introduction

Mathematical knowledge has never been so reachable in a digital form like it is nowa-

days. In today’s world, we are using software to solve mathematical problems and

having all the answers in a matter of seconds. To come where we are standing today,

much of the mathematical literature must have been digitalized. If we looked back on

the last decade, we would notice that enormous amounts of world’s data have been

generated. That enabled machine learning algorithms to evolve and with the devel-

opment of machine learning and artificial intelligence in general, software for solving

mathematical tasks improved and became much more powerful and accurate.

In recent times, machine learning (henceforth also referred to as ML) and artificial

intelligence, in general, gained a lot of attention and popularity due to its applicability

in many fields. ML is a field of computer science that focuses on building systems that

can learn by experience, without being explicitly programmed. That allowed programs

to solve mathematical tasks similar to the ones in the knowledge base. About ten years

ago, Wolfram Alpha was first introduced. Since then a lot has changed. Ten years is

not really a long period of time, except when it comes to technology. Today we also

have PhotoMath’s application that we can use to solve various mathematical tasks by

just scanning our notebooks with our mobile phones. This thesis is about classifying

such computer-solvable math problems into different areas of mathematics.

Classification is the problem of identifying to which of a predefined set of labels

a new data instance belongs. There are two main approaches to machine learning –

supervised and unsupervised learning. In supervised classification, some examples in

the data set are labeled (e.g., category is already known for some tasks). To predict un-

labeled tasks, we first need to train the classifier on some labeled data. These labels are

given to the model during the learning process. In unsupervised learning, by contrast,

the model is not provided with any correct answers and groups data into classes based

on some measure of similarity between them.

If all tasks would be mapped to corresponding categories, the knowledge could be

appropriately organized into mathematical areas. Furthermore, the system could then

1

give the user recommendations to solve similar tasks and strengthen their knowledge

in this area. Also, if we could predict task category from the task itself, solving the

task could be based on category prediction and become faster and simplified.

In the next chapter of this thesis, I will introduce you to the data I was working

with. The third chapter will describe the models that I used in my solution. In chapter

four results of this project will be presented and interpreted. Finally, in the last chapter

I will shortly explain my thoughts and conclusions on this project.

2

2. Dataset

In 2014 a company named PhotoMath launched a software that scans photos of math-

ematical tasks, recognizes them using OCR and shows the user steps to solve them.

Optical Character Recognition, or OCR, is a technology that makes it possible to con-

vert different types of documents such as images, scanned media or PDFs into editable

and searchable data. To provide users with a step-by-step solution, PhotoMath built

their own solver. After parsing a mathematical task that has been scanned, PhotoMath

app converts this string to some agreed prefix command form which is then being

passed to the solver. If the solver managed to resolve the given task, it then outputs

steps explaining to the user how it came to the solution.

For this thesis PhotoMath provided me with the dataset of 2829 labeled tasks. Each

task belongs to a certain mathematical category. All possible categories are listed in

the category taxonomy they have given me. These categories do not include all areas

of mathematics, but have been defined manually by mathematicians working in Pho-

toMath. The taxonomy includes only math areas that PhotoMath can work with. Those

categories are hierarchically related. Each task can be labeled with only one category.

If the category that the task is labeled with is of depth 4 in a category tree, then this

task also belongs to each category that is contained in the path from the root to the label.

Below is an example of one simple instance from the data set:

F.8.1.1;;Positive number within absolute value bars;;

(simplify_wrapper;(simplify;(abs;(abs_real;))));;abs(const(2));auto

Four columns describing the task are separated with a double semicolon.

category path ;; category name ;; solver steps ;; prefix command

First two columns are identifying the category that this particular task belongs to.

3

Each category is defined with a name and a path. Some categories in the taxonomy

can have identical names. That is why the path is used to identify each category and

additionally define relations between the categories.

Before explaining the remaining columns, it is important to mention that the cate-

gory taxonomy is loaded from a separate file that contains all predefined mathematical

categories. The category taxonomy is loaded into a tree structure. Each category path

defines where this category is positioned in a tree of all existing categories. E.g., if

the path to the category is F.8.1., it then means that this category is the first child of

category F’s 8th child. Each child node in the category tree is a subcategory, meaning

parent categories are more general and define a mathematical area to a lesser extent.

That is why all parent categories from the label to the root are also considered corre-

sponding to the task.

Figure 2.1: An excerpt from the taxonomy for category “Functions”.

Figure 2.1 shows us a part of the taxonomy. Besides the name of the category, each

node also contains the appropriate path prepended to the category name.

The next or third column in the data set contains steps from the solver in a string

form. The steps are written in pre-order tree traversal. Each step is surrounded by

parenthesis and ends with a semicolon, except for some leaf nodes. Before parsing

solver steps into ordered solver tree, the third column is being validated. If every-

thing is in order, the solver tree is generated. The mentioned solver tree structure is

the representation of the given mathematical problem. Since the data is not flat, but

4

hierarchical, we will be doing multinomial classification on tree structures. This will

be explained in detail in the next chapter.

Finally, the last column is not being used in this thesis project. However, this is a

PhotoMath command for solving this task, written in prefix form. It may be involved

in future work. For now, we have focused on category prediction based on solver trees.

Figure 2.2: Sparsity of labels. Blue nodes represent labels that are existent in the data set.

5

However, besides working with hierarchical data there is another relevant obstacle

to overcome. Only a subset of 565 labels from a set of 3707 possible categories is

represented in this data set. This problem is known as the problem of “sparse labels”.

Most of the categories here would not be present in the training phase and the system

would never predict these categories because it wouldn’t know they existed.

In Figure 2.2, we can see the distribution of sparse categories in the data set. The

graph is generated with the “networkx” library in Python. All labels that are present

in the data set are coloured blue. Sparse labels are coloured red. Each ellipse is repre-

senting a certain depth in a categorytree.

To avoid this difficulty, I restricted the maximum depth (hereafter also called level)

of training labels to n. That way the number of unrepresented labels in a data set

would decrease significantly and categorization would be successful. A downside of

this approach is that all categories of depth in a category tree that is larger than n would

be generalized to a category of depth n, so the classification would be less precise. For

example, if I chose a level of training labels to be three, all original labels will be

transformed to categories of depth three or less.

6

3. Model

As we have already concluded, this problem demands hierarchical multiclass classifi-

cation. “In machine learning, multiclass or multinomial classification is the problem

of classifying instances into one of the more than two classes.” (Wikipedia, 2017)

There are two main approaches to this problem. Trees are hierarchical data structures

and deserve a different approach than flat data which is most often classified. The

structure of the tree plays an important part in differentiating the data.

However, one approach is similar to the standard approach with flat data. The idea

is to map instances from the data set to feature vectors. The structure of the data needs

to be considered when building feature space. The other approach uses kernel methods

and avoids directly operating on feature space.

3.1. Classifiers

In both approaches, I have used some already implemented classifiers from scikit-learn

package in Python (Pedregosa et al., 2011). Some of the classifiers that I have tried

out throughout this thesis are Support Vector Machine, LinearSVC, Naive Bayes and

Random Forest.

3.1.1. Support Vector Machine

Support Vector Machine is a supervised learning model associated with algorithms

for classification and regression. SVM maps instances from the data set so that the

examples of the separate classes are divided by a widest possible gap. New instances

are then mapped into the same space and predicted to a class (or a category) based

on which side of the gap they fall. Besides being a linear classifier, SVM can be

kernelized and used for hierarchical classification, implicitly mapping their inputs into

high-dimensional feature spaces depending on the kernel function. In this thesis I have

used SVM in both kernelized and standard way.

7

SVM Hyperparameters

SVM seeks to find a gap that separates all positive and negative examples. However,

outliers – extremely unusual or mislabeled instances can strongly affect SVM’s pre-

dictions in a negative way. That can lead to poorly fit models. To account for this there

is a hyperparameter C that can be manually configured when working with SVM. The

idea is to have a “soft margin” that allows some instances to be "ignored" or placed on

the different side of the margin. Optimizing hyperparameter C often leads to a better

overall fit. Parameter C controls the influence of each instance – each support vector in

training the model. A small C means lower variance, but higher bias. Larger C means

lower bias, but higher variance. In a way, we are trading error penalty for stability of

our classifier.

The kernel parameter is simply a similarity measure. That will be explained in

detail in subchapter 3.3. “Kernel Methods”.

3.1.2. LinearSVC

LinearSVC is a version of SVM with parameter kernel=’linear’. It has been imple-

mented in a different way, so that it would work faster on large data sets and have more

freedom in the choice of penalties and loss functions. There are significant differences

between SVC with linear kernel and LinearSVC scikit implementations, since they

always present different results when trained and evaluated on the same data. In my

experiments, LinearSVC models performed really well and predicted results with the

highest accuracy.

3.1.3. Naive Bayes

Naive Bayes classifier, hereafter NB, is based on Bayes’ Theorem. The adjective

“naive” is found here because of the strong “naive” assumptions that the features are

independent. NB is a conditional probability model. For each instance, it assigns

probabilities that it belongs to a certain class. In Figure 3.1, we can see the formula

associated with these probabilities.

Figure 3.1: NB assigns “posterior” probability to each instance from the data set

8

With naive assumptions for feature independence and constant value in the denom-

inator, we get the formula which NB uses to make predictions:

Figure 3.2: This formula is taken from Scikit-learn (2016).

I will not further describe hyperparameteres with NB, since I did not optimize them

and NB hasn’t really proved effective in this project.

3.1.4. Random Forest

Random Forest classifier works by generating decision trees in the training phase, us-

ing the random selection of features. Afterwards, it predicts the class that is the mode

of the classes. Decision trees are a popular ML method and are invariant to scaling

and many other transformations of feature values. However, trees that are deep tend to

learn highly irregular patterns and overfit the model. Random forests try to combine

multiple trees and average them, so that each tree is trained on a different part of the

common training data.

Random Forest Hyperparameter

In this work, I have optimized the “n_estimators” parameter. This hyperparameter

defines the number of trees in a forest.

3.2. Mapping Solver Trees to Feature Vectors

Most classification algorithms require data transformed into a numeric vectorized form,

representing the values of the data’s features in the feature space. That allows analyz-

ing the data in the vector space using linear algebra. Since we are mapping trees to

feature vectors, a hierarchy of the data needs to be preserved in the feature space. To

do that, we will need to contain more information in feature vectors.

The proposed mapping of tree structures into feature vectors is inspired by Yang

et al. (2005) and based on the binary tree representation of rooted ordered labeled

trees. In a binary tree, every node has at most two children. The standard algorithm

to transform an ordinary tree to its corresponding binary tree is through the left-child,

right-sibling representation.

9

Conversion procedure:

1) Create the edges between all siblings in a tree

2) Delete all the edges between each node and its children except those that connect

it with its first child

3) All leaves must be epsilon-leaves

In Figure 3.3 below, there is an example of a transformation to a binary tree. We can

see how all siblings are connected and all leaves are epsilons. These representations

are taken from Yang et al. (2005) and modified.

Figure 3.3: An example of ordinary rooted tree and a corresponding binary tree.

After all solver trees in the data set have been transformed to binary trees, next

move is to traverse through each binary tree and build a vocabulary of binary branches.

Binary branch is defined by two edges connecting the node with both of its children.

For each entry in the data we traverse again through its binary solver tree and count

occurrences of each binary branch. We then represent this tree as a feature vector

of same dimensions as the binary branch vocabulary. The output vector is mostly

filled with zeros and other values represent the number of occurrences certain binary

branches appeared in the tree.

In Figure 3.4, the dictionary of binary branches records numbers of occurences of a

certain binary branch in every data instance represented by a corresponding binary tree

Ti. Afterwards, these information are used to create feature vector for each instance in

the data set.

10

edges between the original siblings. This property makes
the transformed binary tree representation appropriate for
highlighting the effect of the edit-based operations on origi-
nal trees.

3.2 Vector Representation of Trees
To encode the structural information we normalize the

transformed binary tree representation B(T) of T . In B(T),
for any node u, if u has no right (or left) child, we ap-
pend a ε node (i.e., nodes labeled as ε do not exist in T)
as u’s right (or left) child. Thus we make T a full binary
tree in which all the original nodes have two children and
all the leaves are labeled as ε (as in Fig. 2). The nor-
malized binary tree representation is defined as B(T) =
(N

⋃{ε}, El, Er, Root(B(T)), label), where ε denotes the
appended nodes as well as their labels. To simplify the no-
tation, in this paper u ∈ N represents the node as well as its
label where no confusion arises. In order to quantify change
detection in a binary tree, we define the binary branch on
normalized binary trees:

Definition 2 (Binary Branch) Binary branch (or branch
for short) is the branch structure of one level in the binary
tree. For a tree T , ∀u ∈ N there is a binary branch BiB(u)
in B(T) such that BiB(u) = (Nu, Eul , Eur , Root(Tu)),
where Nu = {u, u1, u2} (u ∈ N ; ui ∈ N

⋃{ε}, i = 1, 2),
Eul = {〈u, u1〉l}, Eur = {〈u, u2〉r} and Root(Tu) = u in the
normalized B(T).

According to the properties of normalized binary trees,
we have Lemma 3.1:

Lemma 3.1 For each node u ∈ N of a tree T , u may appear
in at most two binary branches in the binary tree represen-
tation B(T).

PROOF:

1. u can occur as root in at most one binary branch. This
is obvious.

2. u can occur as the left (or right) child in at most one
binary branch. u can not occur as the left child in
one branch and as the right child in another branch at
the same time; otherwise, u must have two parents in
B(T). That is contrary to the properties mentioned in
section 2.

Assume that the universe of binary branches BiB() of all
trees in the dataset composes alphabet Γ and the symbols
in the alphabet are sorted lexicographically on the string
uu1u2. A representative vector of dimension |Γ| can be
built for each tree-structured data record, with each dimen-
sion recording the number of occurrences of a correspond-
ing branch in the data. The formal definition of the binary
branch vector is given in Definition 3.

Definition 3 (Binary Branch Vector) The binary branch
vector BRV (T) of a tree T is a vector (b1, b2, · · · b|Γ|), with
each element bi representing the number of occurrences of
the ith binary branch in the tree. |Γ| is the size of the binary
branch space of the dataset.

We can first build an inverted file for all binary branches,
as shown in Fig. 3(a). An inverted file has two main parts:

a vocabulary which stores all distinct values being indexed,
and an inverted list for each distinct value which stores the
identifiers of the records containing the value. The vocab-
ulary here consists of all existing binary branches in the
datasets. The inverted list of each component records the
number of occurrences of it in the corresponding trees. The
resulting vectors of our transformation for the trees in Fig. 1
and the normalized binary trees in Fig. 2 are shown in
Fig. 3(b).

BRV(T)2

1BRV(T)

2
2

...

...

...

...

...

...

...

2

1

0

200

1...

(b) Binary Branch Vectors

(a) Inverted File

...

...

...

...

...

...

...

...

...

...

...

...

12

2

1

0

0

10

10

1

1

1

T

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.

1
1T

.

.

.
.
.

.
.
.

.
.
.

.
εce

ε
b

c
c

b
b
c

b
b
ε
a

d
.
.

.

ε
εe

ε
εd

e
εd

b
εd

2T
1 1

2T
1

2T
2

2T
1

2T
1

2T

c
e

b

T
1

1T
2

1T
2

1T
1

1T
1

1

Figure 3: Binary Branch Vector Representation

Based on the vector representation, we define a new dis-
tance of the tree structure as the L1 distance between the
vector images of two trees:

Definition 4 (Binary Branch Distance) LetBRV (T1) =
(b1, b2, · · · , b|Γ|), BRV (T2) = (b′1, b

′
2, · · · b′|Γ|) be the binary

branch vectors of trees T1 and T2 respectively. The binary

branch distance of T1 and T2 is BDist(T1, T2) = Σ
|Γ|
i=1|bi−b′i|

The binary branch distance has the properties listed be-
low: For all T1, T2 and T3 in the dataset,

1. BDist(T1, T2) ≥ 0, and BDist(T1, T1) = 0

2. BDist(T1, T2) = BDist(T2, T1)

3. BDist(T1, T3) ≤ BDist(T1, T2) +BDist(T2, T3)

PROOF

The first two properties are obvious. For the third
property, let BRV (Ti) = (bi1, bi2, · · · , bi|Γ|) for i =
1, 2, 3.

BDist(T1, T2) +BDist(T2, T3)

= Σ
|Γ|
j=1|b1j − b2j |+Σ

|Γ|
j=1|b2j − b3j |

≥ Σ
|Γ|
j=1|b1j − b3j | = BDist(T1, T3)

The third property means that the binary branch distance
satisfies the triangular inequality. However, BDist(T1, T2) =
0 cannot imply that T1 is identical to T2. This is illustrated
in Fig. 4, where both trees have the same binary branch
vector. So the binary branch distance is not a metric on
tree-structured data.

Figure 3.4: Creating feature vectors from dictionary of binary branches. This is taken from

Yang et al. (2005).

In Figure 3.5 we can see how feature vectors generated this way do not strictly

preserve information about the structure of the solver tree. This is a good fit for this

thesis because most of the time small differences and changes in the order solver steps

are arranged are not that significant for determining the task category correctly. We do

need to roughly preserve the structure here, just not in that much detail.

D

CC

CB

A

D

cB

A

Figure 4: Trees with 0 Binary Branch Distance

3.3 Lower Bound of Edit Distance
In this section, we prove our main theorem.

Theorem 3.2 Let T and T ′ be two trees. If the tree-edit
distance between T and T ′ is EDist(T, T ′), then the bi-
nary branch distance between them satisfies the following:
BDist(T, T ′) ≤ 5× EDist(T, T ′)

PROOF: The theorem follows if we show that at most
5×k binary branch distance is incurred by k edit operations.
Assume that edit operations e1, e2, · · · , ek transform T to
T ′. Accordingly, there is a sequence of trees T = T0 →
T1 → · · · → Tk = T ′, where Ti−1 → Ti via ei for 1 ≤ i ≤ k.
Let there be k1 relabeling operations, k2 insertions and k3
deletions. k1 + k2 + k3 = k. It is sufficient to prove the
theorem for one step of the transformation.

1. Assume that ei is a relabeling operation on some node
v of the tree. According to Lemma 3.1, v occurs in
at most two binary branches in B(Ti−1). In these two
branches, label(v) is changed to the new one in the
target tree B(Ti). Assume that the count of the two
binary branches in BRV (Ti−1) is in dimension l1 and
l2, while the two new binary branches are in dimension
l3 and l4. Then BRV (Ti−1)[lm] − BRV (Ti)[lm] = 1,
for m = 1, 2. BRV (Ti−1)[lm′] − BRV (Ti)[lm′] = −1,
for m′ = 3, 4. So, BDist(Ti−1, Ti) ≤ 4.

2. Assume that ej inserts a node v to transform Tj−1 to
Tj. Obviously, when v has a parent, a left sibling, a
right sibling and child nodes, this operation leads to
the maximum number of changes on the structure in-
formation. Fig. 5 and Fig. 6 demonstrate the insertion
operation and the changes it causes on the binary tree
representation. Let v be inserted under node v′ and
child nodes wl+1, · · ·wl+m of v′ in Tj−1 become the
child nodes of v in Tj.

v

...
...

......

...

...

v’

......

.........

v’

lw2w1wwl+m+1l+mwlw2w1w w

w l+ml+1w

l+m+1

Figure 5: Insertion of Node v Under Node v′

We show that at most five changes occur on the edges
of B(Tj−1): Two edges 〈v, wl+1〉l and 〈v, wl+m+1〉r
representing the structure information rooted on v are
added into the binary tree. These edges comprise the
binary branch BiB(v). So, assuming that it corre-
sponds to dimension l in BRV (Tj), then BRV (Tj)[l]−
BRV (Tj−1)[l] = 1. In addition, the sibling relation-
ship between wl and wl+1, and between wl+m and wl+m+1

...

...

...

v

...

......

...

...

v’

...

...

w l+m

w l+2

l+m+1w
w l+1

w l

2w

1w

v’

...

...

l+m+1w

l+mw
l+1w

lw

w2

1w

Figure 6: Changes of Binary Tree Incurred by In-
sertion

in Tj−1 (represented by 〈wl, wl+1〉r and 〈wl+m, wl+m+1〉r
respectively in B(Tj−1)) are destroyed. This leads to
the destruction of one of each binary branch BiBTj−1 (wl)
and BiBTj−1 (wl+m). Thus, the values for the two cor-
responding dimensions in BRV (Tj) are less than those
in BRV (Tj−1) by 1. Finally, 〈wl, wl+1〉r is replaced
by 〈wl, v〉r in B(Tj) for v is the right sibling of wl after
being inserted in Tj . 〈wl+m, wl+m+1〉r is replaced by
〈wl+m, ε〉r for wl+m is the right most child of v in Tj

after insertion. Then the values of the corresponding
two dimensions in BRV (Tj) are larger than those in
BRV (Tj−1) by 1 each. To sum up, BDist(Tj−1, Tj)
is at most 5.

3. Deletion is complementary to insertion. Therefore the
number of affected binary branches must be bounded by
the same amount as for insertion.

According to the triangular inequality property of binary branch
distance, we have

BDist(T, T ′) ≤ BDist(T0, T1) +BDist(T1, T2) + · · ·
+BDist(Tk−1, Tk)
≤ 4× k1 + 5× k2 + 5× k3 ≤ 5× k
≤ 5× EDist(T, T ′).

3.4 Extended Study
Our generalized analysis is similar to the q-gram method

[19] for solving the k-difference problem of strings. The num-
ber of occurrences of each q-gram (i.e., all strings of length
q over the alphabet) in any two strings are counted. If two
strings are similar, they have many q-grams in common.
Formally, if the edit-distance of strings S1 and S2 is k, then
they have at least max(|S1|, |S2|) − (k − 1)q − 1 q-grams
in common. When applied to similarity search problems
in which the full strings are involved, the q-gram method
usually trades off the false positive for the false negative
rate by adjusting the length of the q-gram searched [8]. Bi-
nary branches can be viewed as playing the role of q-gram
structures for tree data. The vector images of trees can be
extended to record multiple level binary branch profiles. We
first give the formal definition of the q-level binary branch:

Definition 5 The q-level binary branchBiB Q(n0, n1, · · ·
, n2q−2) is the perfect binary tree of height q − 1, where
n0, n1, · · · , n2q−2 is the sequence obtained by preorder
traversing the perfect binary tree (with all leaf nodes at the
same depth and all internal nodes having degree 2).

Figure 3.5: Trees with zero-distance when converted to binary trees (Yang et al., 2005)

.

Now that every instance has been mapped to a corresponding feature vector, we

can choose any classifier and see how it behaves and how accurate it categorizes our

tasks. The classifiers I have used are SVM, Random Forest, Linear SVM, and Naive

Bayes. They have all been implemented in scikit-learn package I’ve been using in

Python (Pedregosa et al., 2011). The results will be provided to the reader in the next

11

chapter.

3.3. Kernel Methods

To preserve information about the structure in hierarchical data, dimensions of feature

space must be increased for feature vectors to contain more information. This causes

the effect known as “the curse of dimensionality”. The classification power decreases

with an increase in the dimensionality of the input. With this being the main disadvan-

tage of the first approach and considering that kernel methods do not operate directly

on feature space, it is safe to say kernel methods are often preferred choice.

Kernel methods avoid transformation to vectors. They only require a kernel. A

kernel is a measurement of similarity of each pair of instances in the data set. Tree

kernel is defined as:

K : T × T →R

It operates on trees and returns a number that describes similarity between two given

trees. Furthermore, the computational complexity of analyzing the feature space de-

pends only on the complexity of the kernel function. Analyzing the feature space is

independent of the feature space dimensions, so kernel methods do not suffer this curse

of dimensionality. This is especially convenient for small data sets with huge feature

space.

As this data set consists of 2829 finite examples, we can get a complete represen-

tation of a kernel by generating a kernel matrix of size 2829×2829. The function for

determining a kernel and building a kernel matrix is called the kernel function. Since

the data is now represented with a kernel matrix instead of a feature matrix, all analysis

will be performed over the kernel matrix. Many machine learning algorithms can be

kernelized. I have focused on kernel methods with Support Vector Machine.

To kernelize SVM, it suffices to define a kernel function and pass it to the classi-

fier. To be valid, the kernel function must satisfy Mercer’s condition. Validness of a

kernel function, however, does not imply that such kernel is efficient or even effective.

Instead, this means that the kernel is defined in a correct way and can be passed as an

argument to the Support Vector Machine or some other kernelized classifier.

12

Mercer’s condition only says that a kernel K is valid if:

n∑

i=1

n∑

j=1

K (T1 ,T2)cicj ≥ 0

for all choices of real-valued coefficients ci and cj . This simply means that a kernel

function must a positive semi-definite function. For a function to be positive semi-

definite, it must fulfill two conditions:

1. f (x) = 0 for x = 0

2. f (x) ≥ 0 for x ∈ D and x 6= 0

where D is domain of the data we are working with. Therefore, our kernel matrix K

needs to have all zeros on the top-left to bottom-right diagonal because the numbers on

that diagonal are representing the similarity of each tree compared to itself. All other

values in the matrix must be greater than or equal to zero.

I have implemented two tree kernel functions that I found appropriate for this case.

One is based on converting trees into strings and it is basically a string kernel. The

other one is based on comparing subpaths in trees. Both methods are explained in

detail in (Causevic, 2017).

3.3.1. Tree Kernel Based on Converting Trees into Strings

The idea behind this tree kernel is to convert two trees into strings so that the strings

encode the tree’s structure. Afterwards, we apply string kernel to converted strings.

How Trees Are Converted to Strings

As we can see in Figure 3.6, to encode and preserve the tree’s structure usually the

parenthesis are used and the tree is presented in the pre-order traversal. PhotoMath

saved their solver trees in this form; they were included in the data set as strings.

Therefore, I found this kernel method convenient to implement.

Applying String Kernel Method

Kernel between two strings S1 and S2 is defined as:

Kstring(S1, S2) =
∑

s∈C

nums(S1)nums(S2)

where nums(Sx) is number of occurrences of substring s in string Sx.

Finally, C is defined as the set of all common substrings that appear in both S1 and S2.

13

Figure 3.6: An example of encoding tree structure and content into string

Possible members of C are all solver commands from a given string. For example,

if Sx is “(simplify;(simplify_wrapper(abs_real)))” then possible entries for C would be

“simplify”, “simplify_wrapper”, and “abs_real”.

Since support vector machine estimator in scikit-learn gets input matrix only as

float, I input a matrix of task ids. The kernel function I’ve implemented gets a task

solver tree from extracting information about the task from data. It then calculates a

kernel by the given formula.

3.3.2. Tree Kernel Based on Subpaths

A subpath is a segment of a path from the root to one of the leaves. With this approach,

we can compare trees based on subpaths of a certain length that they have in common.

Extracting Subpaths from a Tree

The first step of this approach would be to implement a function that finds the set of all

subpaths in the given tree. For subpaths we are extracting we need to define a certain

length l. To find this set of subpaths we first find paths from the root to each of the

leaves. We then operate on these paths and take all their subsections of length l. In the

Figure 3.7 we can see an example of extracted subpath sets for length l equal to two

and three.

14

Figure 3.7: An example of extractring subpaths of length l from a tree.

Building the Kernel Matrix

Extracting subpaths of length l from both trees we are comparing preceeds applying

the formula below:

K(T1, T2) =
∑

sp∈S

numsp(T1)numsp(T2)ws

where numsp(Tx) is the number of occurrences of subpath sp in tree Tx. A subpath

set of tree T is the set of all subpaths included in the tree. In this formula S is an

interception of subpath sets of trees T1 and T2. Therefore, S contains all common

subpaths of two mentioned trees.

This kernel method operates vertically on trees, which means that we find similar

only those trees that have similar vertical structures. The reason I chose this method

is that it works quite differently than the first two approaches I tried. I wanted to

see what makes some task belong to a certain category. I was looking for an answer

to questions like – If we considered only one category, what would then be the best

similarity measure between all solver trees within this category? To compare tree

similarity based on their vertical structure or just mathematical operations that appear

in the solution of these tasks? So I took three different methods to see which fits the

problem of this thesis. The results are presented in the following chapter.

15

4. Results

Before interpreting final results, I will shortly introduce each reported metric to explain

the intuition behind them.

Accuracy

Percentage of all predictions that are correct. Accuracy shows us how good a model is.

accuracy =
correct predictions

all predictions

Precision

Percentage of all positive predictions that are correct or indeed positive.

precision =
positive predicted correctly

all positive predictions

Recall

“Recall is intuitively the ability of the classifier to find all the positive samples.” (Al-

bon, 2016). Recall alone is not enough as it is trivial to achieve recall of score 1 (ideal

value).

recall =
predicted to be positive

all positive instances

F1 score

The F1 score is defined as the harmonic mean of the precision and recall. In the

multinomial classification this is the weighted average of the F1 score of each class.

F1 = 2
precision ∗ recall
precision + recall

16

The motivation for using F1 score hides in the fact that it shows us some intuition on

how precision and recall are balanced and how accurate our system really is. F1 score

reaches its best score at 1 and worst score at 0.

All models shown below are optimized by cross-validated grid search over some or

all of their parameters. The data set has been split randomly into train and test part. All

models were trained on 75 percent of the data set and tested on 25. In cross-validation

k number of folds was set to five. Table 4.1 shows us the parameters that the grid search

was performed on. Only optimized values of corresponding parameters are shown for

each classifier.

Classifier Parameters
SVM C: 1, kernel: linear

LinearSVC C: 0.1

Random Forest n_estimators: 35

Kernelized SVM C: 1

Table 4.1: Optimized classifiers with corresponding parameters

4.1. Mapping trees to feature vectors

In Table 4.2 we can see that the classifier predicted labels of level 1 really well. That

is expected though, because there are only 8 categories of depth less or equal to one.

And we have 2829 instances.

Level 1
Classifier Precision Recall F1 score
SVC 0.930 0.924 0.924

LinearSVC 0.928 0.922 0.922

Random Forrest 0.921 0.917 0.917

Table 4.2: Results for each classifier, level 1

On label precision of level 2, there are 23 labels. In Table 4.3, we can see that linear

SVC classifier had the best performance. Its parameter C has been optimized and its

value is set to 1.

17

Level 2
Classifier Precision Recall F1 score
SVC 0.894 0.880 0.881

LinearSVC 0.904 0.896 0.896

Random Forrest 0.875 0.860 0.862

Table 4.3: Results for each classifier, level 2

In Table 4.4 are shown full results for each class showing the model performance

with LinearSVC. The “support” column represents the number of instances in the test

set that belonged to a certain mathematical category.

18

Level 2
Label Precision Recall F1 score support
A.1 0.856 0.856 0.856 90

A.12 1.000 0.900 0.947 20

A.13 1.000 1.000 1.000 2

A.2 0.902 0.949 0.925 39

A.4 0.857 0.750 0.800 16

A.5 0.857 1.000 0.923 6

A.8 0.900 1.000 0.947 9

B.1 0.943 0.971 0.957 34

B.2 0.800 1.000 0.889 8

B.3 0.955 0.875 0.913 24

B.4 0.000 0.000 0.000 0

B.5 0.864 0.655 0.745 29

B.6 0.968 0.833 0.896 36

B.7 1.000 0.846 0.917 13

C.1 0.933 0.933 0.933 30

C.2 1.000 0.953 0.976 43

F.2 1.000 1.000 1.000 18

F.5 0.909 0.952 0.930 21

F.8 1.000 0.750 0.857 4

F.9 0.750 0.857 0.800 7

H.1 0.917 0.647 0.759 17

H.3 0.767 0.972 0.857 71

H.4 1.000 0.966 0.982 29

avg / total 0.904 0.896 0.896 566

Table 4.4: Full results for best classifier, LinearSVC

Some classes like A.13 and F.2 have all three metrics equal to one. That might

be the result of obvious and routinary solver trees. For example, in the data set there

is a lot of tasks that are labeled as some form of mathematical equations – category

A. Their solver steps look really similar as solving an equation is always a routine

procedure.

19

In Tables 4.5 and 4.6, we can see how scores are getting smaller while the number

of possible categories increases. On level = 3 and level = 4 the LinearSVC has still

proven to be the best classifier. At the maximum category depth of 4, the problem with

sparsity reappears.

Level 3
Classifier Precision Recall F1 score
SVC 0.751 0.705 0.702

LinearSVC 0.783 0.751 0.748

Random Forrest 0.743 0.705 0.699

Table 4.5: Results for each classifier, level 3

Level 4
Classifier Precision Recall F1 score
SVC 0.635 0.613 0.590

LinearSVC 0.660 0.634 0.607

Random Forrest 0.620 0.618 0.583

Table 4.6: Results for each classifier, level 4

4.2. Tree Kernel Method Based on String Similarity

In Table 4.7 we can see results of tree kernel method that measures the similarity

between the trees by looking at solver commands these trees have in common.

Level Precision Recall F1 score
2 0.923 0.917 0.916

3 0.817 0.790 0.787

4 0.659 0.610 0.596

Table 4.7: Results per levels

We can see that this seems to overcome the first approach with mapping trees to

feature vectors. This model achieves best results on all levels.

20

Level 2
Label Precision Recall F1 score support
A.1 0.952 0.940 0.946 84

A.12 1.000 1.000 1.000 23

A.2 0.943 0.943 0.943 35

A.4 0.765 0.765 0.765 17

A.5 0.833 1.000 0.909 10

A.8 0.938 1.000 0.968 15

B.1 0.914 0.970 0.941 33

B.2 1.000 1.000 1.000 10

B.3 1.000 0.963 0.981 27

B.4 0.500 1.000 0.667 1

B.5 0.850 0.630 0.723 27

B.6 0.941 0.865 0.901 37

B.7 1.000 0.778 0.875 9

C.1 1.000 1.000 1.000 28

C.2 1.000 0.974 0.987 38

F.2 1.000 1.000 1.000 19

F.5 0.824 0.875 0.848 16

F.8 0.800 1.000 0.889 4

F.9 0.714 0.625 0.667 8

H.1 1.000 0.652 0.789 23

H.3 0.787 0.959 0.864 73

H.4 1.000 1.000 1.000 29

avg / total 0.923 0.917 0.916 566

Table 4.8: Full results for level 2, string kernels

Again, we can notice in Table 4.8 how some classes perform unexpectedly well,

although there were almost 30 instances in the test set that were labeled with this cat-

egory. To be sure what I said was true, I checked to which areas of mathematics these

labels belong to. Above we can see categories C.1 and H.4, Trigonometric equations

and Derivatives, accomplishing ideal values in all three metrics.

21

4.3. Tree Kernel Method Based on Subpaths

This last approach seems to be the least accurate one. Comparing the subpaths of

length n to measure the similarity of trees proved to be inefficient in this case. Length

n was optimized, but the results remained low as seen in Table 4.9.

Level Precision Recall F1 score
3 0.531 0.488 0.470

Table 4.9: Results for subpaths kernel method, level 3

4.4. Shortly on Results

I am generally satisfied with the results achieved in this thesis. I must also be honest

and say that I already see some potential for future improvement, especially in case

task describitions would be provided. The first approach which consisted of mapping

solver trees to feature vectors surprised me with such high accuracy due to its main

disadvantage – direct transformation of data to feature space. Implementing all three

methods helped me in figuring out what really matters and what should be the measure

of similarity between solver trees. Although the string kernel method worked best, it

is not safe to say that it’s the most successful one. The data set was quite sparse and

the structure should, however, still be taken into account. The achievement of the first

approach indicated how the structure should be preserved along with the content. It

also pointed out how the optimal way to encode structure into feature vectors should

not be in a robust, strict way. It should be somehow flexible. Altogether, I am content

with the result that were presented in this chapter and I hope I will improve them in the

future, perhaps on a bigger data set.

22

5. Conclusion

The goal of this thesis was to build a system that can classify software-solvable math-

ematical tasks into predefined mathematical categories. The solution to this problem

has been accomplished and the results achieved in this project are satisfactory.

The first approach included mapping solver trees to vectors in the feature space.

This is also how we usually behave when data is flat. However, we had to preserve

information about the structure of solver trees and were therefore obligated to increase

the dimensions of the feature space. By increasing the dimensions of the feature space,

our representation of the data set in the feature space became more sparse and in-

fluenced our predictions negatively. Although this approach may not be optimal, the

results that were achieved seem to be quite successful. The cause of that might be that

our transformation to feature space encoded the tree structure into feature vectors to

the right extent. The structure was encoded as a vocabulary of binary branches. How-

ever, it could easily be the case that original structure has been a bit misinterpreted

after conversion from the ordinary to the binary tree. That allowed us to encode tree

structure into feature vectors more freely.

In contrast, the second approach avoids operating on feature space directly and uses

kernel methods. We have implemented two kernel functions and passed their reference

to Support Vector Machine. The first kernel function calculated a kernel based on the

string similarities between trees encoded as strings. This method proved even more

successful than the first approach with mapping solver trees to the feature space. Later

on, I implemented a kernel function that generates a kernel matrix based on common

subpaths in solver trees. Despite my expectations, this proved to be much less efficient.

23

Future Work

Despite the problems with data sparsity, some future work could be done on predicting

the categories on all depths of the taxonomy. The classifier could start predicting

at the maximum depth and label tasks if the level of confidence is high enough. It

could then progress towards more general categories and label them the same way –

if it is confident enough to do so. If not, it should leave it to the next iteration with

more general categories. The data set should also contain more tasks from currently

unrepresented labels. Especially since the taxonomy is still not complete. Various

kernel methods could still be implemented. Likewise, it would be interesting to try

and combine unsupervised with supervised learning approach and try to classify tasks

based on the PhotoMath prefix commands which remained untouched in the current

data set. Assuming that raw tasks in string form could be made available to us and

with application of NLP algorithms, I believe it would work at least for more general

categories. Nonetheless, it would undoubtedly be interesting to work on that.

24

BIBLIOGRAPHY

Chris Albon. Precision, recall and f1 scores, 2016. URL https:

//chrisalbon.com/machine-learning/precision_recall_

and_F1_scores.html.

Dino Causevic. Tree kernels: Quantifying similarity among tree-structured

data, 2017. URL https://www.toptal.com/machine-learning/

structured-data-tree-kernels.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. Journal of Machine

Learning Research, 12(Oct):2825–2830, 2011.

Scikit-learn. Naive bayes, 2016. URL http://scikit-learn.org/stable/

modules/naive_bayes.html.

Wikipedia. Multiclass classification — Wikipedia, the free encyclopedia,

2017. URL https://en.wikipedia.org/wiki/Multiclass_

classification#cite_ref-3.

Rui Yang, Panos Kalnis, i Anthony K. H. Tung. Similarity evaluation on tree-

structured data. U Proceedings of the 2005 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD ’05, stranice 754–765, New York, NY,

USA, 2005. ACM. ISBN 1-59593-060-4. doi: 10.1145/1066157.1066243. URL

http://doi.acm.org/10.1145/1066157.1066243.

25

Računalna analiza sličnosti matematičkih zadataka zadanih riječima

Sažetak

Cilj ovog rada bio je napraviti sustav za kategorizaciju matematičkih zadataka.

Tvrtka PhotoMath prije nekoliko je godina uspješno izašla na tržiste sa istoimenom

aplikacijom koja omogućuje korisnicima da mobitelom skeniraju zadatak te u kratkom

vremenu dobiju detaljan postupak rješavanja. PhotoMath mi je dao priliku da riješim

ovaj problem i osigurao vlastiti skup podataka za ovaj rad. Svaki matematički za-

datak predstavljen je stablom naredbi odnosno postupaka koji čine rješenje zadatka.

Svakom zadatku cilj je pridijeliti matematičku kategoriju. Sve su kategorije ranije

definirane taksonomijom te svaka kategorija predstavlja neko matematičko područje.

Implementirana su dva različita pristupa. Prvi je pristup obuhvaćao pretvorbu stabla

postupaka u pripadajuće vektore značajki. Vektori su bili generirani tako da sadržavaju

i informacije o strukturi podataka. Nad vektorima značajki zatim se radila klasifikacija

podataka. Rezultati su se pokazali poprilično uspješnima. Drugi pristup sastojao se

od izgradnje matrice med̄usobne sličnosti svih podataka u skupu. Isprobane su dvije

metode mjerenja sličnosti izmed̄u stabla. Najbolje rezultate postigla je mjera sličnosti

koja ovisi o broju zajedničkih naredbi saržanih u oba stabla. Druga metoda pokazala

se manje učinkovitom.

Ključne riječi: višeklasna klasifikacija, sličnost kod stabla, kernel metode, hijerarhi-

jska klasifikacija, kategorizacija matematičkih zadataka, strojno učenje

Computational Analysis of Math Word Problems

Abstract

The task of this thesis was to build a system that can classify computer-solvable

mathematical tasks into predefined mathematical categories. A few years ago, a com-

pany named PhotoMath released its homonymous app that is able to output solution

steps to the user after recognizing the mathematical task scanned with a mobile phone.

They provided me with the data set and the idea for this project. Each mathematical

category represents some area of mathematics. The categories are hierarchically re-

lated. Each task is represented by a corresponding solver tree. Solver tree is a tree

that consists of steps which explain task resolution to the user. There were two main

ideas to implement. The first approach consisted of mapping solver trees from each

task in the data set to a vector in the feature space. Although this approach may not

be optimal, the results are quite successful. The cause of that might be that our trans-

formation to feature space encoded the tree structure into feature vectors to the right

extent. In contrast, the second approach avoids operating on feature space directly and

uses kernel methods. I have implemented two kernel functions and passed their refer-

ence to Support Vector Machine. The first kernel function calculated a kernel based on

the string similarities between trees encoded as strings. This method proved even more

successful than the first approach with mapping solver trees to the feature space. Later

on, I implemented a kernel function that generates a kernel matrix based on common

subpaths in solver trees. Despite my expectations, this proved to be much less efficient.

Keywords: hierarchical multinomial classification, hierarchical data, tree similarity,

mathematical categories, task categorization, classification, kernel, machine learning.

