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1. Introduction

Mathematical knowledge has never been so reachable in a digital form like it is nowa-
days. In today’s world, we are using software to solve mathematical problems and
having all the answers in a matter of seconds. To come where we are standing today,
much of the mathematical literature must have been digitalized. If we looked back on
the last decade, we would notice that enormous amounts of world’s data have been
generated. That enabled machine learning algorithms to evolve and with the devel-
opment of machine learning and artificial intelligence in general, software for solving
mathematical tasks improved and became much more powerful and accurate.

In recent times, machine learning (henceforth also referred to as ML) and artificial
intelligence, in general, gained a lot of attention and popularity due to its applicability
in many fields. ML is a field of computer science that focuses on building systems that
can learn by experience, without being explicitly programmed. That allowed programs
to solve mathematical tasks similar to the ones in the knowledge base. About ten years
ago, Wolfram Alpha was first introduced. Since then a lot has changed. Ten years is
not really a long period of time, except when it comes to technology. Today we also
have PhotoMath’s application that we can use to solve various mathematical tasks by
just scanning our notebooks with our mobile phones. This thesis is about classifying
such computer-solvable math problems into different areas of mathematics.

Classification is the problem of identifying to which of a predefined set of labels
a new data instance belongs. There are two main approaches to machine learning —
supervised and unsupervised learning. In supervised classification, some examples in
the data set are labeled (e.g., category is already known for some tasks). To predict un-
labeled tasks, we first need to train the classifier on some labeled data. These labels are
given to the model during the learning process. In unsupervised learning, by contrast,
the model is not provided with any correct answers and groups data into classes based
on some measure of similarity between them.

If all tasks would be mapped to corresponding categories, the knowledge could be

appropriately organized into mathematical areas. Furthermore, the system could then



give the user recommendations to solve similar tasks and strengthen their knowledge
in this area. Also, if we could predict task category from the task itself, solving the
task could be based on category prediction and become faster and simplified.

In the next chapter of this thesis, I will introduce you to the data I was working
with. The third chapter will describe the models that I used in my solution. In chapter
four results of this project will be presented and interpreted. Finally, in the last chapter

I will shortly explain my thoughts and conclusions on this project.



2. Dataset

In 2014 a company named PhotoMath launched a software that scans photos of math-
ematical tasks, recognizes them using OCR and shows the user steps to solve them.
Optical Character Recognition, or OCR, is a technology that makes it possible to con-
vert different types of documents such as images, scanned media or PDFs into editable
and searchable data. To provide users with a step-by-step solution, PhotoMath built
their own solver. After parsing a mathematical task that has been scanned, PhotoMath
app converts this string to some agreed prefix command form which is then being
passed to the solver. If the solver managed to resolve the given task, it then outputs
steps explaining to the user how it came to the solution.

For this thesis PhotoMath provided me with the dataset of 2829 labeled tasks. Each
task belongs to a certain mathematical category. All possible categories are listed in
the category taxonomy they have given me. These categories do not include all areas
of mathematics, but have been defined manually by mathematicians working in Pho-
toMath. The taxonomy includes only math areas that PhotoMath can work with. Those
categories are hierarchically related. Each task can be labeled with only one category.
If the category that the task is labeled with is of depth 4 in a category tree, then this

task also belongs to each category that is contained in the path from the root to the label.

Below is an example of one simple instance from the data set:

E.8.1.1;;Positive number within absolute value bars;;

(simplify_wrapper;(simplify;(abs;(abs_real;))));;abs(const(2));auto

Four columns describing the task are separated with a double semicolon.

category path ;; category name ;; solver steps ;; prefix command

First two columns are identifying the category that this particular task belongs to.

3



Each category is defined with a name and a path. Some categories in the taxonomy
can have identical names. That is why the path is used to identify each category and
additionally define relations between the categories.

Before explaining the remaining columns, it is important to mention that the cate-
gory taxonomy is loaded from a separate file that contains all predefined mathematical
categories. The category taxonomy is loaded into a tree structure. Each category path
defines where this category is positioned in a tree of all existing categories. E.g., if
the path to the category is F.8.1., it then means that this category is the first child of
category F’s 8th child. Each child node in the category tree is a subcategory, meaning
parent categories are more general and define a mathematical area to a lesser extent.

That is why all parent categories from the label to the root are also considered corre-

PhotoMath

sponding to the task.

A: Algebra H: Trigonometry

B: Algebra 2

F: Number

and Quantity

D.1: Linear
function

D.4:
Logarithmic
function

G: Statistics and
Probability

D.2: Quadratic \\ /0.3: Exponential
function function
D.3.1: Graph of
exponential function

D.3.1.3: Which
function belongs
to a graph

D.4.1: Graph of
logarithmic
function

D.4.1.3: Which
unction belongs to
a graph

D.4.1.2:
Drawing graphs
where the base
O<a<1

D.3.1.1:
Drawing
graphs where the
basea > 1

D.4.1.1: Drawing
graphs where the
basea > 1

D.3.1.2: Drawing
graphs where the
base0 <a<1

Figure 2.1: An excerpt from the taxonomy for category “Functions”.

Figure 2.1 shows us a part of the taxonomy. Besides the name of the category, each
node also contains the appropriate path prepended to the category name.

The next or third column in the data set contains steps from the solver in a string
form. The steps are written in pre-order tree traversal. Each step is surrounded by
parenthesis and ends with a semicolon, except for some leaf nodes. Before parsing
solver steps into ordered solver tree, the third column is being validated. If every-
thing is in order, the solver tree is generated. The mentioned solver tree structure is

the representation of the given mathematical problem. Since the data is not flat, but
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hierarchical, we will be doing multinomial classification on tree structures. This will
be explained in detail in the next chapter.

Finally, the last column is not being used in this thesis project. However, this is a
PhotoMath command for solving this task, written in prefix form. It may be involved

in future work. For now, we have focused on category prediction based on solver trees.

Figure 2.2: Sparsity of labels. Blue nodes represent labels that are existent in the data set.



However, besides working with hierarchical data there is another relevant obstacle
to overcome. Only a subset of 565 labels from a set of 3707 possible categories is
represented in this data set. This problem is known as the problem of “sparse labels”.
Most of the categories here would not be present in the training phase and the system
would never predict these categories because it wouldn’t know they existed.

In Figure 2.2, we can see the distribution of sparse categories in the data set. The
graph is generated with the “networkx” library in Python. All labels that are present
in the data set are coloured blue. Sparse labels are coloured red. Each ellipse is repre-
senting a certain depth in a categorytree.

To avoid this difficulty, I restricted the maximum depth (hereafter also called [evel)
of training labels to n. That way the number of unrepresented labels in a data set
would decrease significantly and categorization would be successful. A downside of
this approach is that all categories of depth in a category tree that is larger than n would
be generalized to a category of depth n, so the classification would be less precise. For
example, if I chose a level of training labels to be three, all original labels will be

transformed to categories of depth three or less.



3. Model

As we have already concluded, this problem demands hierarchical multiclass classifi-
cation. “In machine learning, multiclass or multinomial classification is the problem
of classifying instances into one of the more than two classes.” (Wikipedia, 2017)
There are two main approaches to this problem. Trees are hierarchical data structures
and deserve a different approach than flat data which is most often classified. The
structure of the tree plays an important part in differentiating the data.

However, one approach is similar to the standard approach with flat data. The idea
1s to map instances from the data set to feature vectors. The structure of the data needs
to be considered when building feature space. The other approach uses kernel methods

and avoids directly operating on feature space.

3.1. Classifiers

In both approaches, I have used some already implemented classifiers from scikit-learn
package in Python (Pedregosa et al., 2011). Some of the classifiers that I have tried
out throughout this thesis are Support Vector Machine, LinearSVC, Naive Bayes and

Random Forest.

3.1.1. Support Vector Machine

Support Vector Machine is a supervised learning model associated with algorithms
for classification and regression. SVM maps instances from the data set so that the
examples of the separate classes are divided by a widest possible gap. New instances
are then mapped into the same space and predicted to a class (or a category) based
on which side of the gap they fall. Besides being a linear classifier, SVM can be
kernelized and used for hierarchical classification, implicitly mapping their inputs into
high-dimensional feature spaces depending on the kernel function. In this thesis I have

used SVM in both kernelized and standard way.



SVM Hyperparameters

SVM seeks to find a gap that separates all positive and negative examples. However,
outliers — extremely unusual or mislabeled instances can strongly affect SVM’s pre-
dictions in a negative way. That can lead to poorly fit models. To account for this there
is a hyperparameter C that can be manually configured when working with SVM. The
idea is to have a “soft margin” that allows some instances to be "ignored" or placed on
the different side of the margin. Optimizing hyperparameter C often leads to a better
overall fit. Parameter C controls the influence of each instance — each support vector in
training the model. A small C means lower variance, but higher bias. Larger C means
lower bias, but higher variance. In a way, we are trading error penalty for stability of
our classifier.

The kernel parameter is simply a similarity measure. That will be explained in

detail in subchapter 3.3. “Kernel Methods”.

3.1.2. LinearSVC

LinearSVC is a version of SVM with parameter kernel="linear’. It has been imple-
mented in a different way, so that it would work faster on large data sets and have more
freedom in the choice of penalties and loss functions. There are significant differences
between SVC with linear kernel and LinearSVC scikit implementations, since they
always present different results when trained and evaluated on the same data. In my
experiments, LinearSVC models performed really well and predicted results with the

highest accuracy.

3.1.3. Naive Bayes

Naive Bayes classifier, hereafter NB, is based on Bayes’ Theorem. The adjective
“naive” is found here because of the strong “naive” assumptions that the features are
independent. NB is a conditional probability model. For each instance, it assigns
probabilities that it belongs to a certain class. In Figure 3.1, we can see the formula

associated with these probabilities.

Pl[yjp[;rla"'xn | y]
P[;IH_,...,;I‘HII

P(y|:l"1,...,:1"ﬂj=

Figure 3.1: NB assigns “posterior” probability to each instance from the data set



With naive assumptions for feature independence and constant value in the denom-

inator, we get the formula which NB uses to make predictions:

m
jj = arg max P(y) H Plzi | y)
=1
Figure 3.2: This formula is taken from Scikit-learn (2016).

I will not further describe hyperparameteres with NB, since I did not optimize them

and NB hasn’t really proved effective in this project.

3.1.4. Random Forest

Random Forest classifier works by generating decision trees in the training phase, us-
ing the random selection of features. Afterwards, it predicts the class that is the mode
of the classes. Decision trees are a popular ML method and are invariant to scaling
and many other transformations of feature values. However, trees that are deep tend to
learn highly irregular patterns and overfit the model. Random forests try to combine
multiple trees and average them, so that each tree is trained on a different part of the

common training data.

Random Forest Hyperparameter

In this work, I have optimized the “n_estimators” parameter. This hyperparameter

defines the number of trees in a forest.

3.2. Mapping Solver Trees to Feature Vectors

Most classification algorithms require data transformed into a numeric vectorized form,
representing the values of the data’s features in the feature space. That allows analyz-
ing the data in the vector space using linear algebra. Since we are mapping trees to
feature vectors, a hierarchy of the data needs to be preserved in the feature space. To
do that, we will need to contain more information in feature vectors.

The proposed mapping of tree structures into feature vectors is inspired by Yang
et al. (2005) and based on the binary tree representation of rooted ordered labeled
trees. In a binary tree, every node has at most two children. The standard algorithm
to transform an ordinary tree to its corresponding binary tree is through the left-child,

right-sibling representation.



Conversion procedure:
1) Create the edges between all siblings in a tree
2) Delete all the edges between each node and its children except those that connect
it with its first child

3) All leaves must be epsilon-leaves

In Figure 3.3 below, there is an example of a transformation to a binary tree. We can
see how all siblings are connected and all leaves are epsilons. These representations

are taken from Yang et al. (2005) and modified.

Figure 3.3: An example of ordinary rooted tree and a corresponding binary tree.

After all solver trees in the data set have been transformed to binary trees, next
move is to traverse through each binary tree and build a vocabulary of binary branches.
Binary branch is defined by two edges connecting the node with both of its children.

For each entry in the data we traverse again through its binary solver tree and count
occurrences of each binary branch. We then represent this tree as a feature vector
of same dimensions as the binary branch vocabulary. The output vector is mostly
filled with zeros and other values represent the number of occurrences certain binary
branches appeared in the tree.

In Figure 3.4, the dictionary of binary branches records numbers of occurences of a
certain binary branch in every data instance represented by a corresponding binary tree
T;. Afterwards, these information are used to create feature vector for each instance in

the data set.
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(b) Binary Branch Vectors

Figure 3.4: Creating feature vectors from dictionary of binary branches. This is taken from

Yang et al. (2005).

In Figure 3.5 we can see how feature vectors generated this way do not strictly
preserve information about the structure of the solver tree. This is a good fit for this
thesis because most of the time small differences and changes in the order solver steps
are arranged are not that significant for determining the task category correctly. We do

need to roughly preserve the structure here, just not in that much detail.

Figure 3.5: Trees with zero-distance when converted to binary trees (Yang et al., 2005)

Now that every instance has been mapped to a corresponding feature vector, we
can choose any classifier and see how it behaves and how accurate it categorizes our
tasks. The classifiers I have used are SVM, Random Forest, Linear SVM, and Naive
Bayes. They have all been implemented in scikit-learn package I've been using in

Python (Pedregosa et al., 2011). The results will be provided to the reader in the next
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chapter.

3.3. Kernel Methods

To preserve information about the structure in hierarchical data, dimensions of feature
space must be increased for feature vectors to contain more information. This causes
the effect known as “the curse of dimensionality”. The classification power decreases
with an increase in the dimensionality of the input. With this being the main disadvan-
tage of the first approach and considering that kernel methods do not operate directly
on feature space, it is safe to say kernel methods are often preferred choice.

Kernel methods avoid transformation to vectors. They only require a kernel. A
kernel is a measurement of similarity of each pair of instances in the data set. Tree
kernel is defined as:

K:TxT—R

It operates on trees and returns a number that describes similarity between two given
trees. Furthermore, the computational complexity of analyzing the feature space de-
pends only on the complexity of the kernel function. Analyzing the feature space is
independent of the feature space dimensions, so kernel methods do not suffer this curse
of dimensionality. This is especially convenient for small data sets with huge feature
space.

As this data set consists of 2829 finite examples, we can get a complete represen-
tation of a kernel by generating a kernel matrix of size 2829x2829. The function for
determining a kernel and building a kernel matrix is called the kernel function. Since
the data is now represented with a kernel matrix instead of a feature matrix, all analysis
will be performed over the kernel matrix. Many machine learning algorithms can be
kernelized. I have focused on kernel methods with Support Vector Machine.

To kernelize SVM, it suffices to define a kernel function and pass it to the classi-
fier. To be valid, the kernel function must satisfy Mercer’s condition. Validness of a
kernel function, however, does not imply that such kernel is efficient or even effective.
Instead, this means that the kernel is defined in a correct way and can be passed as an

argument to the Support Vector Machine or some other kernelized classifier.
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Mercer’s condition only says that a kernel K is valid if:

Zn:i:K(TI, TQ)CZ‘CJ‘ Z 0

i=1 j=1

for all choices of real-valued coefficients ¢; and c¢;. This simply means that a kernel
function must a positive semi-definite function. For a function to be positive semi-
definite, it must fulfill two conditions:

l. f(z) =0forz =0

2. f(z)>0forz € Dand x # 0
where D is domain of the data we are working with. Therefore, our kernel matrix K
needs to have all zeros on the top-left to bottom-right diagonal because the numbers on
that diagonal are representing the similarity of each tree compared to itself. All other
values in the matrix must be greater than or equal to zero.

I have implemented two tree kernel functions that I found appropriate for this case.
One is based on converting trees into strings and it is basically a string kernel. The
other one is based on comparing subpaths in trees. Both methods are explained in
detail in (Causevic, 2017).

3.3.1. Tree Kernel Based on Converting Trees into Strings

The idea behind this tree kernel is to convert two trees into strings so that the strings
encode the tree’s structure. Afterwards, we apply string kernel to converted strings.
How Trees Are Converted to Strings

As we can see in Figure 3.6, to encode and preserve the tree’s structure usually the
parenthesis are used and the tree is presented in the pre-order traversal. PhotoMath
saved their solver trees in this form; they were included in the data set as strings.

Therefore, I found this kernel method convenient to implement.

Applying String Kernel Method
Kernel between two strings .S and S, is defined as:

Kstring<517 SQ) - Z numé’(Sl)nums(S?)

seC
where numg(.S,.) is number of occurrences of substring s in string S,.

Finally, C is defined as the set of all common substrings that appear in both S1 and S2.

13



Figure 3.6: An example of encoding tree structure and content into string

Possible members of C are all solver commands from a given string. For example,
if S, is “(simplify;(simplify_wrapper(abs_real)))” then possible entries for C would be
“simplify”, “simplify_wrapper”, and “abs_real”.

Since support vector machine estimator in scikit-learn gets input matrix only as
float, I input a matrix of task ids. The kernel function I’ve implemented gets a task
solver tree from extracting information about the task from data. It then calculates a

kernel by the given formula.

3.3.2. Tree Kernel Based on Subpaths

A subpath is a segment of a path from the root to one of the leaves. With this approach,

we can compare trees based on subpaths of a certain length that they have in common.

Extracting Subpaths from a Tree

The first step of this approach would be to implement a function that finds the set of all
subpaths in the given tree. For subpaths we are extracting we need to define a certain
length [. To find this set of subpaths we first find paths from the root to each of the
leaves. We then operate on these paths and take all their subsections of length /. In the
Figure 3.7 we can see an example of extracted subpath sets for length [ equal to two

and three.
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Figure 3.7: An example of extractring subpaths of length [ from a tree.

Building the Kernel Matrix

Extracting subpaths of length [ from both trees we are comparing preceeds applying

the formula below:

K(T,Ty) = Z numg, (11 ) numsg, (T )w,

spes
where nums,(T) is the number of occurrences of subpath sp in tree 7),. A subpath
set of tree " is the set of all subpaths included in the tree. In this formula S is an
interception of subpath sets of trees 7} and 7,. Therefore, S contains all common
subpaths of two mentioned trees.

This kernel method operates vertically on trees, which means that we find similar
only those trees that have similar vertical structures. The reason I chose this method
is that it works quite differently than the first two approaches I tried. I wanted to
see what makes some task belong to a certain category. I was looking for an answer
to questions like — If we considered only one category, what would then be the best
similarity measure between all solver trees within this category? To compare tree
similarity based on their vertical structure or just mathematical operations that appear
in the solution of these tasks? So I took three different methods to see which fits the

problem of this thesis. The results are presented in the following chapter.
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4. Results

Before interpreting final results, I will shortly introduce each reported metric to explain
the intuition behind them.
Accuracy

Percentage of all predictions that are correct. Accuracy shows us how good a model is.

correct predictions

accuracy = —
Y all predictions

Precision

Percentage of all positive predictions that are correct or indeed positive.

positive predicted correctly

recision = — Y
b all positive predictions

Recall

“Recall is intuitively the ability of the classifier to find all the positive samples.” (Al-
bon, 2016). Recall alone is not enough as it is trivial to achieve recall of score 1 (ideal

value).

predicted to be positive
all positive instances

recall =

F1 score

The F1 score is defined as the harmonic mean of the precision and recall. In the

multinomial classification this is the weighted average of the F1 score of each class.

i o precision * recall

precision + recall

16



The motivation for using F1 score hides in the fact that it shows us some intuition on
how precision and recall are balanced and how accurate our system really is. F1 score

reaches its best score at 1 and worst score at 0.

All models shown below are optimized by cross-validated grid search over some or
all of their parameters. The data set has been split randomly into train and test part. All
models were trained on 75 percent of the data set and tested on 25. In cross-validation
k number of folds was set to five. Table 4.1 shows us the parameters that the grid search
was performed on. Only optimized values of corresponding parameters are shown for

each classifier.

Classifier Parameters
SVM C: 1, kernel: linear
LinearSVC C:0.1

Random Forest n_estimators: 35
Kernelized SVM | C: 1

Table 4.1: Optimized classifiers with corresponding parameters

4.1. Mapping trees to feature vectors

In Table 4.2 we can see that the classifier predicted labels of level 1 really well. That
is expected though, because there are only 8 categories of depth less or equal to one.

And we have 2829 instances.

Level 1
Classifier Precision | Recall | F1 score
SvC 0.930 0.924 | 0.924
LinearSVC 0.928 0.922 | 0.922
Random Forrest | 0.921 0917 | 0917

Table 4.2: Results for each classifier, level 1
On label precision of level 2, there are 23 labels. In Table 4.3, we can see that linear

SVC classifier had the best performance. Its parameter C has been optimized and its

value is set to 1.
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Level 2

Classifier Precision | Recall | F1 score
SvC 0.894 0.880 | 0.881
LinearSVC 0.904 0.896 | 0.896
Random Forrest | 0.875 0.860 | 0.862

Table 4.3: Results for each classifier, level 2

In Table 4.4 are shown full results for each class showing the model performance

with LinearSVC. The “support” column represents the number of instances in the test

set that belonged to a certain mathematical category.
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Level 2
Label Precision | Recall | F1 score | support
Al 0.856 0.856 | 0.856 90
A.12 1.000 0.900 | 0.947 20
A.13 1.000 1.000 | 1.000 2
A2 0.902 0.949 | 0.925 39
A4 0.857 0.750 | 0.800 16
AS 0.857 1.000 | 0.923
A8 0.900 1.000 | 0.947
B.1 0.943 0.971 | 0.957 34
B.2 0.800 1.000 | 0.889 8
B.3 0.955 0.875 | 0.913 24
B.4 0.000 0.000 | 0.000 0
B.5 0.864 0.655 | 0.745 29
B.6 0.968 0.833 | 0.896 36
B.7 1.000 0.846 | 0.917 13
C.1 0.933 0.933 | 0.933 30
C.2 1.000 0.953 | 0.976 43
F.2 1.000 1.000 | 1.000 18
E5 0.909 0.952 | 0.930 21
F.8 1.000 0.750 | 0.857 4
F.9 0.750 0.857 | 0.800
H.1 0.917 0.647 | 0.759 17
H.3 0.767 0.972 | 0.857 71
H.4 1.000 0.966 | 0.982 29
avg / total | 0.904 0.896 | 0.896 566

Table 4.4: Full results for best classifier, LinearSVC

Some classes like A.13 and F.2 have all three metrics equal to one. That might
be the result of obvious and routinary solver trees. For example, in the data set there
is a lot of tasks that are labeled as some form of mathematical equations — category
A. Their solver steps look really similar as solving an equation is always a routine

procedure.
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In Tables 4.5 and 4.6, we can see how scores are getting smaller while the number
of possible categories increases. On level = 3 and level = 4 the LinearSVC has still
proven to be the best classifier. At the maximum category depth of 4, the problem with

sparsity reappears.

Level 3
Classifier Precision | Recall | F1 score
SvC 0.751 0.705 | 0.702
LinearSVC 0.783 0.751 | 0.748
Random Forrest | 0.743 0.705 | 0.699

Table 4.5: Results for each classifier, level 3

Level 4
Classifier Precision | Recall | F1 score
SvC 0.635 0.613 | 0.590
LinearSVC 0.660 0.634 | 0.607
Random Forrest | 0.620 0.618 | 0.583

Table 4.6: Results for each classifier, level 4

4.2. Tree Kernel Method Based on String Similarity

In Table 4.7 we can see results of tree kernel method that measures the similarity

between the trees by looking at solver commands these trees have in common.

Level | Precision | Recall | F1 score
2 0.923 0917 | 0.916
3 0.817 0.790 | 0.787
4 0.659 0.610 | 0.596

Table 4.7: Results per levels

We can see that this seems to overcome the first approach with mapping trees to

feature vectors. This model achieves best results on all levels.
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Level 2
Label Precision | Recall | F1 score | support
A.l 0.952 0.940 | 0.946 84
A.12 1.000 1.000 | 1.000 23
A2 0.943 0.943 | 0.943 35
A4 0.765 0.765 | 0.765 17
A5 0.833 1.000 | 0.909 10
A8 0.938 1.000 | 0.968 15
B.1 0.914 0.970 | 0.941 33
B.2 1.000 1.000 | 1.000 10
B.3 1.000 0.963 | 0.981 27
B.4 0.500 1.000 | 0.667 1
B.5 0.850 0.630 | 0.723 27
B.6 0.941 0.865 | 0.901 37
B.7 1.000 0.778 | 0.875 9
C.1 1.000 1.000 | 1.000 28
C.2 1.000 0.974 | 0.987 38
F2 1.000 1.000 | 1.000 19
E5 0.824 0.875 | 0.848 16
E.8 0.800 1.000 | 0.889 4
F.9 0.714 0.625 | 0.667
H.1 1.000 0.652 | 0.789 23
H.3 0.787 0.959 | 0.864 73
H.4 1.000 1.000 | 1.000 29
avg / total | 0.923 0.917 | 0.916 566

Table 4.8: Full results for level 2, string kernels

Again, we can notice in Table 4.8 how some classes perform unexpectedly well,
although there were almost 30 instances in the test set that were labeled with this cat-
egory. To be sure what I said was true, I checked to which areas of mathematics these
labels belong to. Above we can see categories C.1 and H.4, Trigonometric equations

and Derivatives, accomplishing ideal values in all three metrics.
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4.3. Tree Kernel Method Based on Subpaths

This last approach seems to be the least accurate one. Comparing the subpaths of
length n to measure the similarity of trees proved to be inefficient in this case. Length

n was optimized, but the results remained low as seen in Table 4.9.

Level | Precision | Recall | F1 score
3 0.531 0.488 | 0.470

Table 4.9: Results for subpaths kernel method, level 3

4.4. Shortly on Results

I am generally satisfied with the results achieved in this thesis. I must also be honest
and say that I already see some potential for future improvement, especially in case
task describitions would be provided. The first approach which consisted of mapping
solver trees to feature vectors surprised me with such high accuracy due to its main
disadvantage — direct transformation of data to feature space. Implementing all three
methods helped me in figuring out what really matters and what should be the measure
of similarity between solver trees. Although the string kernel method worked best, it
is not safe to say that it’s the most successful one. The data set was quite sparse and
the structure should, however, still be taken into account. The achievement of the first
approach indicated how the structure should be preserved along with the content. It
also pointed out how the optimal way to encode structure into feature vectors should
not be in a robust, strict way. It should be somehow flexible. Altogether, I am content
with the result that were presented in this chapter and I hope I will improve them in the

future, perhaps on a bigger data set.
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5. Conclusion

The goal of this thesis was to build a system that can classify software-solvable math-
ematical tasks into predefined mathematical categories. The solution to this problem
has been accomplished and the results achieved in this project are satisfactory.

The first approach included mapping solver trees to vectors in the feature space.
This is also how we usually behave when data is flat. However, we had to preserve
information about the structure of solver trees and were therefore obligated to increase
the dimensions of the feature space. By increasing the dimensions of the feature space,
our representation of the data set in the feature space became more sparse and in-
fluenced our predictions negatively. Although this approach may not be optimal, the
results that were achieved seem to be quite successful. The cause of that might be that
our transformation to feature space encoded the tree structure into feature vectors to
the right extent. The structure was encoded as a vocabulary of binary branches. How-
ever, it could easily be the case that original structure has been a bit misinterpreted
after conversion from the ordinary to the binary tree. That allowed us to encode tree
structure into feature vectors more freely.

In contrast, the second approach avoids operating on feature space directly and uses
kernel methods. We have implemented two kernel functions and passed their reference
to Support Vector Machine. The first kernel function calculated a kernel based on the
string similarities between trees encoded as strings. This method proved even more
successful than the first approach with mapping solver trees to the feature space. Later
on, I implemented a kernel function that generates a kernel matrix based on common

subpaths in solver trees. Despite my expectations, this proved to be much less efficient.
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Future Work

Despite the problems with data sparsity, some future work could be done on predicting
the categories on all depths of the taxonomy. The classifier could start predicting
at the maximum depth and label tasks if the level of confidence is high enough. It
could then progress towards more general categories and label them the same way —
if it is confident enough to do so. If not, it should leave it to the next iteration with
more general categories. The data set should also contain more tasks from currently
unrepresented labels. Especially since the taxonomy is still not complete. Various
kernel methods could still be implemented. Likewise, it would be interesting to try
and combine unsupervised with supervised learning approach and try to classify tasks
based on the PhotoMath prefix commands which remained untouched in the current
data set. Assuming that raw tasks in string form could be made available to us and
with application of NLP algorithms, I believe it would work at least for more general

categories. Nonetheless, it would undoubtedly be interesting to work on that.
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Racunalna analiza sli¢nosti matematickih zadataka zadanih rije¢ima

Sazetak

Cilj ovog rada bio je napraviti sustav za kategorizaciju matematickih zadataka.
Tvrtka PhotoMath prije nekoliko je godina uspjeSno izaSla na trZiste sa istoimenom
aplikacijom koja omogucuje korisnicima da mobitelom skeniraju zadatak te u kratkom
vremenu dobiju detaljan postupak rjeSavanja. PhotoMath mi je dao priliku da rijeSim
ovaj problem i osigurao vlastiti skup podataka za ovaj rad. Svaki matematicki za-
datak predstavljen je stablom naredbi odnosno postupaka koji Cine rjeSenje zadatka.
Svakom zadatku cilj je pridijeliti matematicku kategoriju. Sve su kategorije ranije
definirane taksonomijom te svaka kategorija predstavlja neko matematicko podrucje.
Implementirana su dva razli¢ita pristupa. Prvi je pristup obuhvadao pretvorbu stabla
postupaka u pripadajuce vektore znacajki. Vektori su bili generirani tako da sadrzavaju
1 informacije o strukturi podataka. Nad vektorima znacajki zatim se radila klasifikacija
podataka. Rezultati su se pokazali poprili¢no uspjeSnima. Drugi pristup sastojao se
od izgradnje matrice medusobne sli¢nosti svih podataka u skupu. Isprobane su dvije
metode mjerenja sli€nosti izmedu stabla. Najbolje rezultate postigla je mjera sli¢nosti
koja ovisi o broju zajednickih naredbi sarZanih u oba stabla. Druga metoda pokazala

se manje ucinkovitom.

Kljuéne rijeci: viSeklasna klasifikacija, slicnost kod stabla, kernel metode, hijerarhi-

jska klasifikacija, kategorizacija matematickih zadataka, strojno ucenje



Computational Analysis of Math Word Problems

Abstract

The task of this thesis was to build a system that can classify computer-solvable
mathematical tasks into predefined mathematical categories. A few years ago, a com-
pany named PhotoMath released its homonymous app that is able to output solution
steps to the user after recognizing the mathematical task scanned with a mobile phone.
They provided me with the data set and the idea for this project. Each mathematical
category represents some area of mathematics. The categories are hierarchically re-
lated. Each task is represented by a corresponding solver tree. Solver tree is a tree
that consists of steps which explain task resolution to the user. There were two main
ideas to implement. The first approach consisted of mapping solver trees from each
task in the data set to a vector in the feature space. Although this approach may not
be optimal, the results are quite successful. The cause of that might be that our trans-
formation to feature space encoded the tree structure into feature vectors to the right
extent. In contrast, the second approach avoids operating on feature space directly and
uses kernel methods. I have implemented two kernel functions and passed their refer-
ence to Support Vector Machine. The first kernel function calculated a kernel based on
the string similarities between trees encoded as strings. This method proved even more
successful than the first approach with mapping solver trees to the feature space. Later
on, I implemented a kernel function that generates a kernel matrix based on common

subpaths in solver trees. Despite my expectations, this proved to be much less efficient.

Keywords: hierarchical multinomial classification, hierarchical data, tree similarity,

mathematical categories, task categorization, classification, kernel, machine learning.



