
Laboratorij za analizu teksta i inženjerstvo znanja
Text Analysis and Knowledge Engineering Lab
Sveučilište u Zagrebu, Fakultet elektrotehnike i računarstva
Unska 3, 10000 Zagreb, Hrvatska

Zaštićeno licencijom
Creative Commons Imenovanje-Nekomercijalno-Bez prerada 3.0 Hrvatska
https://creativecommons.org/licenses/by-nc-nd/3.0/hr/

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND

COMPUTING

BACHELOR THESIS no. 5326

Entity Recognition and
Classification for a Natural

Language Database Interface
Ivan Mršić

Zagreb, srpanj 2017.

I would like to thank my parents and sister who were always there

when I needed them. I would also like to thank my mentor Assoc. prof. Jan Šnajder for

help and guidance during the course of this academic year. Lastly, great and special

thanks goes to Fran and Juraj for their support and help during the last few months.

iii

CONTENTS

1. Introduction 1

2. Related Work 3
2.1. Matched and Relationship Classifier 4

2.2. Named Entity Extraction . 4

3. Dataset 6
3.1. Dataset Tagging . 6

3.1.1. External Tags . 7

3.1.2. Internal Tag . 8

3.2. Dataset processing . 8

3.2.1. Query Processing . 8

3.2.2. Dataset Structure . 10

4. Models 11
4.1. Matched and Relationships Classifier 11

4.1.1. Algorithms . 11

4.1.2. Features . 13

4.1.3. Model Testing . 14

4.2. Numeric Classifier . 14

4.2.1. Algorithms . 15

4.2.2. Features . 16

4.2.3. Model Testing . 16

4.3. Named Entity Extraction Model . 17

4.3.1. Algorithms . 17

4.3.2. Features . 18

4.3.3. Model Testing . 18

4.4. Numeric Entities Extraction . 19

iv

5. Implementation 21

6. Results 24
6.1. Evaluation Methods . 24

6.2. Matched and Relationship Models 25

6.3. Numeric Model . 27

6.4. Named Entity Extraction Model . 29

7. Conclusion 30

Bibliography 31

v

1. Introduction

Throughout the history of coexistence between humans and computers, there always

was a big focus on computer interpreting data – making useful conclusions from it

and choosing the right way of displaying that conclusion so people could understand it

better. As an effect in recent times there has been a surge in graph databases popularity.

In addition to storing data, advantage of such database type lies in its ability to visualize

data, as seen in Figure 1.1 to make interpretation easier, and use some graph theory

properties to perform variety of useful actions such as finding the closest way between

two nodes (entities). Another way to enhance communication between human and

computer could be made with ability to allow machine to understand user queries in

natural language, rather than the user having to input at times complicated queries in

Cypher, language for Neo4j Graph databases.

Figure 1.1: Example of movies Neo4j graph database

Creating such communication system is one of tasks and challenges of Natural

1

language processing, NLP in later text. NLP is a field of computer science which fo-

cuses on computers correctly understanding natural language. Other NLP tasks outside

of communication systems are natural language generation, connecting language and

machine perception, etc. Statistical NLP relies heavily on machine learning. In such

systems computer makes educated guesses based on experience. Often quoted defini-

tion of machine learning by Tom M. Mitchell states: “A computer program is said to

learn from experience E with respect to some class of tasks T and performance mea-

sure P if its performance at tasks in T, as measured by P, improves with experience E”

[11]. In recent times, NLP systems started using deep learning to achieve state-of-art

results in terms of tagging and parsing human text.

One of the ways to achieve human-computer communication over a database would

be to use one of off-the-shelf tools such as API.AI1 or Luis.ai2 to create a simple chat

bot and tune it towards our needs. However that approach although it seems it could

work at first runs into many problems; most notably spam detection, named entity

recognition, and deducting from conversation context. For this reason custom natural

language interface should be constructed if we want to make communication between

man and database as natural as possible.

The goal of this thesis is construction of entity extractor for such an interface. An-

other motivation for creating such a system lies in fact that, since it is specialized for

database communication it could learn a lot faster specific types of requests that would

occur in such systems. Final reasoning for a cunstom solution lies in fact that relation-

ships and entities being searched for can be thought of some more abstract ways, e.g.

Can you give me everyone who starred in Pulp Fiction. Although it is obvious to us

that entity being searched for are people, namely actors, it cannot be extracted explic-

itly from query. Rather, since different entities aren’t that many, it can be though of as

intent; what info does person want to get out of database; taking that approach we clas-

sify queries into count(classes)+1. The constructed interface is used for the database

with information about actors and movies. Those are very popular subjects online, and

the data inside can prove to be convenient for demonstrating different approaches in

entity extraction.

This thesis will first tackle the related work in the entity extraction area. Following

that, the thesis will describe the dataset, followed by the description of the different

models used to tackle the problem . After that comes brief section about implementa-

tion, and in the end results and methods of evaluation are shown.

1https://api.ai/
2https://www.luis.ai/

2

2. Related Work

Inspiration for this system are make your own chatbot systems such as API.AI (seen

in action on Figure 2.1), Converse.AI, and Luis.ai. In those systems conversation is

split into three parts. The first part is intent detection, the second part entity extraction,

and the third (optional) optional part context detection as in does the conversation

build on last few queries. Those systems require all entities we want to extract to

be specifically named in complex menus, without the ability to learn new entities for

extraction from queries where those values are used. Furthermore those systems only

learn intents, while entities and intent connections for context purposes all have to

explicitly named. While all entity values could be extracted from a database, such way

of entity recognition does not cover the cases when entity is missing from a database

and the user would expect the entity to be present in database. The final reasoning for

for such a system lies in the fact that such systems do not offer the ability to detect

entity relationship from a single query.

Figure 2.1: API.AI entity addition

3

2.1. Matched and Relationship Classifier

There has been a substantial amount of work done on intent and question classification,

a problem similar to one presented of relationship and matched entities. Intent detec-

tion is a query classification task that can be formulated as y′
= argmaxy p(y | w1, wn),

where wi is i-th word in a query and y is the intent. Such state-of-the-art system use

word embeddings [3], word representations with highly dimensional vectors computed

from word context. Word enriching with information from semantic lexicons with syn-

onyms and antonyms is used so words would become closer to their synonyms and fur-

ther away from their antonyms in a vector space. These methods are used to improve

scores on word analogy and antonym detection tasks. However, researchers recently

tried to use such methods to improve scores on intent classification [3]. Question clas-

sification systems on the other hand construct models that use bag of words, semantic,

and syntactic features and support vector machine as learning algorithm [8].

2.2. Named Entity Extraction

As for named entity recognition (NER), here it is divided into three smaller tasks and

used to extract entities being searched by. Such systems can use a wide variety of al-

gorithms, as showcased in CoNLL-2003 (Conference on Computational Natural Lan-

guage Learning) shared task [18] :

– AdaBoost.MH,

– Memory based learning,

– Transformation-based learning,

– Support vector machines,

– Conditional random fields (CRF).

At CoNLL-2003, the task was to detect appearance of locations, person, organization,

and miscellaneous named entities. Also showcased at CoNLL-2003 was that using

external knowledge sources such as WordNet [2] or gazetteers can help reduce error

rate quite a lot [18]. Almost all participants used lexical features (words), part-of-

speech (POS for short), orthographic features, and affixes. Their best scores were

around 85–90 for precision, recall, and F1 score on English text. However, the strength

of such systems was shown in ability to also extract named entities from German text,

with best scores in 80–84 range for precision, 64–66 for recall, and 70–72 for F1

score. It was also shown that using label-label and word-label features that CRFs

4

offer greatly helps improve systems performance [17]. Another system that used CRFs

was ABNER (A Biomedical Named Entity Recognizer), where entities from quite a

specific domain (biomedical domain) had to be extracted [16], similar to domain scope

of databases. Depending on entity type being extracted precision, recall and F1 scores

were in the 60–75 range. Making ABNER’s results more impressive is fact that its

default features comprised orthographic and contextual features only, mostly based

on regular expressions and neighboring words, without syntactic or semantic features.

Another interesting aspect of ABNER was its speed, being able to tag 33 sentences per

second on 500 MHz Pentium III running Linux with 512 MB memory. Further point of

interest is how would our natural language interface perform on informal text, database

queries. As shown in team name and sport name extraction from such text using CRF

results can be surprisingly good, having F1 score in range 70–90 [10]. As with other

CRF systems, features included orthographic and contextual features showing their

importance in such systems.

More recently there have been attempts to fuse named entity recognition systems

with state-of-the-art word embedding models, using previously trained models on more

general corpus such as Portugese Wikipedia [15] or previously trained skip-n-grams on

that specific corpora [4] . Such systems performed well slightly beating out CoNLL

shared task scores on the same corpora with inclusion of few additional features. As for

numeric entities, most of year, age, and unit extraction is done by regular expressions,

and assigned probabilities based on words surrounding the number in that query.

5

3. Dataset

To test the idea of natural language interface a dataset of user queries had to be con-

structed. This was done by the three students involved in the creation of the interface:

Juraj, Fran and myself. It was done in about a week. The constructed dataset consists

of 305 positive and 47 negative queries. Only positive queries are considered, since

negative ones are used only for spam classification. Out of 305 positive ones only

277 are actually used in the end, since 28 do not follow guidelines set up for dataset

construction. The guidelines were to write the whole conversation consisting of about

5 queries, and then to tag entities in those queries. One entity of each kind (matched

entity, relationship entity, and searched by entity), and intent were allowed per query.

Overall dataset consists of 1507 words, which averages about 5.44 words per query.

Queries are grouped in conversations split by blank line between them. Dataset is

stored as .csv file. Examples of the dataset are shown in the next chapter.

3.1. Dataset Tagging

Each query was manually tagged with 4 external tags for query and entity classifica-

tion; additional internal tag was used for query extraction. Examples of tagged query

is:

– Show me countries where those <Begin>actors<property | NN> live in, UNION,

Country, LIVES_IN, TRUE.

With the next few queries showing the whole conversation:

– List all actors in the movie <Begin>Imitation game<movie | NN>,WHERE |

POSITIVE,Person,STARRED_IN,

– Remove those born <Begin>before 1985<years | N>,WHERE | NEGATIVE„,

– Show only those that live in <Begin>London<City | NN>,WHERE | POSI-

TIVE„,

– Add those living in <Begin>New York<City | NN>,UNION„,

6

– Sort them by the number of <Begin>movies<property | NN> in which they

played,ORDER BY | DESC„STARRED_IN,

3.1.1. External Tags

Four external tags used for classification with their short descriptions can be seen in

Table 3.1.

Table 3.1: External tags

Tag type Description

INTENT Tag that marks wanted action over

graph database

MATCHED ENTITY Shows entity being matched in

database

RELATIONSHIP Signalizes relationship between

matched and entity being matched by

PARAPHRASE Signalizes whether query is paraphrase

From those four tag types, the second and the third type are used for entity classi-

fication, namely matched entity (one being searched for in the query) and the relation-

ship between matched and entity being searched by. In both of those cases, in addition

to entities present in database, a special NONE tag was used when it was deemed the

classifier should not be able to extract matched entity or relationship explicitly, rather

conversation context should be used to determine them. There are five matched labels

in total:

– Person,

– Movie,

– Country,

– Continent,

– NONE.

and there are also five relationship labels:

– STARRED_IN,

– LIVES_IN,

7

– DIRECTED_BY,

– IS_PART_OF,

– NONE.

3.1.2. Internal Tag

Named entities, ones used as clauses in Cypher queries, needed to be tagged inside the

queries themselves. Internal tags are in following form: <Begin> entity <tag type |

numeric tag>. Such tagging was used to most easily identify where entity starts and

what type is it. The second part of tag was split in two parts using |. The first part

is used to determine exact entity type, while the second part was used to determine

whether entity is numeric or non numeric type since different methods were used for

extractions in both cases. Numeric tags and their short descriptions can be seen in

Table 3.2. Examples of first part of tags were age, name, movie, etc.

Table 3.2: Numeric tags

Tag type Description Examples

N Signalizes numeric entity age, numbers, height etc.

NN Signalizes non numeric entity name, movie etc.

3.2. Dataset processing

3.2.1. Query Processing

After loading .csv file containing queries, queries are processed one by one. Query

processing consists of a number of subtasks:

– Tokenization,

– POS tagging,

– Lemmatization,

– Labeling them for supervised learning

• simple 0-n class labeling for external tags ,

• BIO scheme for inline tags.

8

Tokenization, POS tagging, and lemmatization is also done for new (user input) queries

and all three processes are done using NLTK toolkit [1]. POS tags in NLTK tagger

are ones from Penn Treebank Project [6]. Lemmatization is done using WordNet [2]

lemmatizer. It is the process of converting a morphologically inflected word form into

its canonical, or dictionary, form (e.g., infinitive for verbs, nominative singular for

nouns, etc.). BIO (Begin Inside Out) scheme for named entity labeling means that

every word in a query was tagged with one of three tag types. BIO tags legend is

shown in Table 3.3. Words with begin and inside tags were never labeled as such: they

Table 3.3: BIO tagging legend

Tag type Description

B Signalizes word is the beginning of a named entity

I Signalizes word is inside of a named entity

O Signalizes word is outside of a named entity

always contained in them what named entity type they were tagging, e.g. , B-name,

I-country. A tagged query should look like 3.4.

Important restriction put in place during dataset creation was decision that only a

single named entity would be allowed per query, so a user couldn’t search for movies

both Leonardo Di Caprio and Scarlett Johansson, but instead he would have to search

first for movies Leonardo was in and then for movies Scarlett starred in. As for possible

Table 3.4: BIO scheme example

t Word BIO tag

1 Give O

2 me O

3 all O

4 actors O

5 from O

6 United B-country

7 Kingdom I-country

entity classes and their value ranges, they can be seen in Table 3.5. There are in total

9

12 named entity types, so 25 different labels were needed (one outside, 12 begin, and

12 inside).

Table 3.5: Entity type

Entity type Value range or examples

age [0− 100]

continent Asia, Europe

country Croatia, United Kingdom

gender male, fame

maritial status married, divorced

movie Pulp Fiction

name Mila Kunis

nominations [0− 10]

property name, revenue

rating [0− 100]

revenue [0−∞]

role main

3.2.2. Dataset Structure

At the data structure level, Dataset is a class which contains a list of conversa-

tion objects. Each conversation object has a list of all queries over the database from

that user-database conversation. Both Dataset and Conversation objects have a

number of useful methods for help with dataset analysis. A query object has a number

of member variables, namely query as a single, non tagged string, query as word list,

query as list of tuples (word, POS), query in BIO scheme, lemmatized query, and a

boolean signalizing whether named entity inside of query is numeric.

10

4. Models

To solve the problem of entity extraction from natural language queries, four models

are constructed. One for entity being searched for, henceforth “matched model”, one

for relationships between entity being searched for, henceforth “relationship model”,

one for determining whether entity being searched by is numeric or non numeric,

henceforth “numeric model”, and for model for extraction of non numeric (named)

entities being searched by, henceforth: “entity model”.

4.1. Matched and Relationships Classifier

Even though matched entity and relationship classification are two separate problems,

they are viewed together because most of the features are used in both models, and the

same classification algorithms are used in both cases. Both are viewed mostly as intent

classification tasks since nothing from the query had to be explicitly extracted, only the

entity class a user is looking for. Another reason for viewing these problems together

is similarity between problems in special case when it isn’t expected of classifier to

determine the entity, instead it should be deducted from the context, or in case of

relationship there doesn’t have to be one present in the query at all – therefore, classifier

should classify that case as NONE.

4.1.1. Algorithms

To tackle matched classification problems two supervised machine learning algorithms

are considered: SVM (Support vector machine) and gradient boosting. Two kernels are

considered for SVM: a linear kernel and an RBF (radial basis function) kernel.

SVM is described in [19]. SVM is machine learning algorithm which has been

successfully applied to many real world classifying problems, such as handwritten

digit recognition, object recognition, and, importantly text classification [19]. It can

also be used for regression problems. We first define an SVM for the binary clas-

11

sification problem. Given binary divided dataset of n feature-vector - label pairs,

((~X1, ~y1), . . . , (~Xn, ~yn)), an SVM goal is to find “maximum range hyperplane”, where

a normal vector of hyperplane ~w is defined with:

~w · ~x− b = 0 (4.1)

with hyperplane dividing points in vector space into two classes. The margin is defined

with ~b
||~w|| . If data is indeed linearly separable, the margins can be written as:

~w · ~x− b = ±1 (4.2)

and on Figure 4.1 margins can be seen as dotted lines. This case is known as hard-

margin. There also exists another formulation of SVM, which is used to classify ex-

Figure 4.1: Binary SVM classifier, illustration taken from http://docs.opencv.org/

amples where data is not linearly separable with linear classifier, approach also known

as soft-margin. Goal of the soft-marigin is to minimize the following function:

[
1

n

n∑
i=1

max(0, 1− yi(~w · ~xi − b))] + λ||~w||2 (4.3)

where for small λ values classifier will behave almost identically to hard-line classifier.

It penalizes wrongly classified points on the wrong side of the hyperplane or within the

12

margin depending on how far the point is from the hyperplane. For a larger distance

between point and hyperplane the larger penalty is given.

Kernel trick enables us to use the different kernel functions to easily map classi-

fier to more dimensions, thus solving non linear problems. Kernel is defined in the

following way:

K(~x, ~y) = (φ(~x), φ(~y) (4.4)

.

Examples of the kernel functions used in this thesis are the linear kernel:

k(~xi, ~xj) = (~xi, ~xj)
d (4.5)

and RBF kernel:

k(~xi, ~xj) = exp(−γ||~xi − ~xj||2) for γ > 0 (4.6)

Gradient boosting is described in [7]. It involves three elements:

1. A loss function to be optimized,

2. A weak learner to make predictions,

3. An additive model to add weak learners to minimize the loss function.

The loss function used depends on the problem type being solved; an example would

be the logarithmic loss for classification. One of the gradient boost benefits is that

it can work with any loss function. The most commonly used weak learners are the

decision trees in gradient boosting, and they are constructed in greedy manner based

on purity scores like Gini score. Larger trees have 4–8 levels. While they are being

added one at the time, a gradient descent is used to minimize the loss. The output for

the new tree is then added to the output of the existing sequence of trees in an effort to

correct or improve the final model output; always a fixed number of trees are added.

One of the main gradient boosting downsides is the fact that it is prone to overfitting,

which is to say it can learn too well and fail to generalize when given new examples

[7].

4.1.2. Features

Since it was shown that word embeddings have good performance on intent classifi-

cation [3] tasks, they are the first feature considered for classification. To obtain em-

bedding for each particular word, pre-trained vectors trained on part of Google News

13

dataset (about 100 billion words) were used [9]. The model contains 300-dimensional

vectors for 3 million words. If a word isn’t in the vocabulary, 300 zeroes are put in

instead of word embedding from the pre-trained model. Embedding for query is cal-

culated by appending vectors of all words in query. Furthermore it was also shown

that POS and synonym features tend to perform well [3]. Synonyms are acquired

from WordNet [2], noun synonyms for matched entities and verb synonyms for re-

lationships. The reasoning behind this is a convection in Neo4j that entities should

be nouns and relationships should be verbs. Although it is not recommended to mix

word embeddings and BOW type features, BOW type features are also constructed.

Bag of words is a simple binary feature showing whether the given word appears in a

document. Features are shown in Table 4.1.

Entity synonyms were used only when testing matched models and relationship

synonyms were used only when testing relationship models.

4.1.3. Model Testing

For both the SVM classifier and gradient boosting classifier scikit-learn [13] imple-

mentations is used. For both algorithms dataset is split into a train and test set with a

ratio of 80 : 20, with classifier learning on 80% with 20% of data unseen to classifier

being used for testing. In case of SVM, both linear and RBF kernels are considered.

For linear kernel, the optimal value of hyperparameter C is considered from range

[2−15, 2−14, . . . , 214, 215]. That same range is used for hyperparameters C and γ in the

RBF kernel. In case of gradient boost, the number of boosting stages and maximum

depth of individual estimators is optimized. Number of boosting stages is searched

for in set {200, 220, 240, 260, 280, 300}, while the maximum depth search range is

{2, 3, 4, 5, 6}. Grid search over a Cartesian product of parameters is performed. Search

is performed using a 10-fold bin cross validation, meaning the test set is split into 10

parts and the classifier learns with each combination of parameters over all 10 splits.

Hyperparameters with the best average score are taken for final training on the whole

train set before testing the classifier on new, unseen train set. In the end, classifier

learns over all data available, trying to construct the best possible model.

4.2. Numeric Classifier

Before extracting the entity being searched by, another step had to be undertaken:

classifying whether that entity would be numeric or non-numeric. This classification is

14

Table 4.1: Matched and relationships features

Python module Description Value range

adjectiveratio Ratio of adjectives in the

query

x ∈ [0, 1]

adverbratio Ratio of adverbs in the query x ∈ [0, 1]

bigrams Apperance of a word pair

wi, wi+1, in that order in

query

x ∈ [0, 1, . . .)

bow Whether the word wi appears

in query

x ∈ [0, 1, . . .)

intent_tags Feature that shows what is the

query intent

x ∈ {0, 1}

lemm_bow Whether word wi appears in

the lemmatized query

x ∈ [0, 1, . . . , n)

nounratio Ratio of nouns in the query x ∈ [0, 1]

pronounratio Ratio of pronouns in the

query

x ∈ [0, 1]

propnounratio Ratio of proper nouns in the

query

x ∈ [0, 1]

querylen Number of words in the query x ∈ [1, 2, . . . , n)

synonyms_entities Whether entity synonym si

appears in the query

x ∈ [0, 1, . . . , n)

synonyms_relation Whether relationship syn-

onym si appears in the

query

x ∈ [0, 1, . . . , n)

verbratio Ratio of verbs in the query x ∈ [0, 1]

word2vecquery Word embedding wi x ∈ [0, 1]

important, because depending on the entity type methods for extraction were different.

4.2.1. Algorithms

Although checking whether a query contains numbers can be done using an expert

system, decision tree is used because of interpretability such model gives when graph-

15

ically displayed, which can easily point out to cases when such system could fail,

allowing for easier conclusion why such a system might fail to classify an entity cor-

rectly to help us determine future course of action. Decision trees are described in [5].

Decission trees are a predictive model that generates decision rules on which model

bases its decisions. Decision trees are a supervised learning method used in both re-

gression and classifcation. Given points xi, a decision tree recursively partitions the

input space in a way that points with same label are grouped together. In each step it

chooses a split that leaves the least ammount of impurity, impurity being messured in

gini score or as cross-entropy. Exact decision tree implementation in scikit-learn uses

CART (Classification and Regression Trees) algorithm [13].

4.2.2. Features

Since this can be done by expert systems, only a handful of simple features are con-

structed. Features resemble rules that would have been used in such a system. All

features are simple binary features that indicate whether expression being searched for

is present in query qi. The features are shown in 4.2 :

Table 4.2: Numeric classifier features

Python module Description Value range

hascardinal Searches qi for cardinal num-

bers in it based on POS a tag

x ∈ {0, 1}

hasnumber Simple regular expression to

look for numbers in qi

x ∈ {0, 1}

haswrittennumber Searches qi for match inside

of handcrafted list of number

words

x ∈ {0, 1}

4.2.3. Model Testing

Once again the dataset is split 80 : 20 into train and test set. Testing for the best

tree depth is done by using cross validation over 10 random folds for each tree depth.

Tree depths considered are 3, 4, 5, 6. That range is chosen because feature number is

small and simple, easy to understand system separating queries with numeric and non-

16

numeric entities is desired, so complicated tree isn’t something we want. The complete

cross-validation process takes very little time, around 20 seconds, showcasing model

simplicity.

4.3. Named Entity Extraction Model

4.3.1. Algorithms

As evidenced by CoNLL shared task, conditional random fields CRF [17] gave good

results on the task of of entity extraction, so a decision was made to use it as machine

learning algorithm for named entity extraction. CRFs are also described in [17].

CRF is machine learning method applied to structured learning, enabling us to

learn not only from feature vector for word wi itself but also from neighboring data. In

this particular case a linear chain CRF was used. By definition, a linear CRF is

p(y|x) =
1

Z(x)

T∏
t=1

exp
K∑
k=1

θkfk(yt, yt−1, xt) (4.7)

Here we calculate the conditional probability of vector y (given vector x as an input,

with y to be classified into a single, most probable class) as a product of an exponential

function with exponent being dot product of a parameter vector Θ and the feature

vector f of (yt, yt−1, xt), them both being of length K, over all T observations. This

is in the end divided by the Z(x), where Z(x) is an input-dependent normalization

function.

Z(x) =
∑
y

T∏
t=1

exp(
K∑
k=1

θkfk(yt, yt−1, xt)) (4.8)

Even though it sums over all possible state sequences, an exponentially large number

of terms, it can be computed efficiently with forward-backward algorithm. Notice

that a linear chain CRF can be described as a factor graph over x and y with simple

substitution :

ψt(yt, yt−1, xt) = exp
K∑
k=1

(θkfk(yt, yt−1, xt)) (4.9)

A factor graph is a bipartite graph G = (V,F,E) in which one set of nodes V ε {1,|Y|}

indexes the random variables in the model, and the other set of nodes F ε {1,A} indexes

the factors, with such a graph representing factorization of a function. Factorization is

17

done in a following way: a distribution p(y) factorizes according to a factor graph G if

there exists a set of local functions Ψa as:

p(y) = Z−1
∏
aεF

Ψa(yN(a)) (4.10)

Factor graph G describe an undirected model in the same way a collection of subsets

does, useful for grouping multiple words into a single, most probable named entity.

Such a way of representing data enables us to extract not only information from

feature vector, but also from the connections between labels [17], shown in Figure 4.2.

A PyStruct implementation of linear chain CRFs is used.1

Figure 4.2: Conditional random fields, illustration taken from https://www.researchgate.net

4.3.2. Features

For the task of named entity extraction, for each word wt of query qi the features

are constructed and they can all be seen in Table 4.3. Once again, the first feature

is Word2Vec word embedding from the Google news model. Other features included

gazetteers, bag of words, regular expression matching certain word patterns, POS fea-

tures, etc [12]. There are also two features where neighboring words wt−1 and wt+1 in

vicinity of a word wt were looked at. For that purpose, two special tokens were added:

<START>, which symbolizes word is at the beginning of a query, and <END>, which

symbolizes the word is at the end of a query. The relative word position in the query is

calculated as position(wt)
length(qi)

.

4.3.3. Model Testing

The dataset is split again into train to test ratio of 80 : 20. Cross validation is done

again here with 10 folds.
1https://pystruct.github.io/

18

Table 4.3: Matched and relationships features

Python module Description Value range

bow Word is equal to another one

wt = v

x ∈ {0, 1}

digitword wt contains digit x ∈ {0, 1}
endsindot wt ends with dot x ∈ {0, 1}
isadjective wt is adjective x ∈ {0, 1}
isadverb wt is adverb x ∈ {0, 1}
iscapitalized wt is capitalized x ∈ {0, 1}
iscaps wt is whole in uppercase x ∈ {0, 1}
iscountry wt is in list of countries x ∈ {0, 1}
iscontinent wt is in list of continents x ∈ {0, 1}
isnoun wt is noun x ∈ {0, 1}
ispronounn wt is pronoun x ∈ {0, 1}
ispropnoun wt is proper noun x ∈ {0, 1}
isstopword wt is in stop word list x ∈ {0, 1}
isuperlower wt is written in mixed letter

cases

x ∈ {0, 1}

isverb wt is verb x ∈ {0, 1}
prefix wt starts with one of most

common prefixes in English

x ∈ {0, 1}

sufix wt ends with one of most

common noun suffixes in En-

glish

x ∈ {0, 1}

w2v 300 dimensional wt

Word2Vec embedding

x ∈ [0, 1]

wordafter bow-like feature for wtt+ 1 x ∈ {0, 1}
wordbefore bow-like feature for wtt− 1 x ∈ {0, 1}
wordlen character length of wt x ∈ [0, 1, . . . , n]

wordposistion relative position of wt x ∈ [0, 1]

4.4. Numeric Entities Extraction

For numeric entities such as age, years or, revenue extraction is done using regular

expressions and expert system, which is based on number range and the appearance
19

of other keywords, such as over, between, older etc . After extracting the words of

interest, system creates entity object for few most likely entities and passes them to a

user to choose from them if it determines they are too similar to make prediction on

type. An example would be Over 50; although from context it may be clear to us if

that represents age or revenue, without the context the entity cannot be deducted.

20

5. Implementation

The entity extraction system has been built in Python and is split into four main com-

ponents:

– Dataset processing,

– Feature extraction,

– Model learning,

– Using predicted models in future.

Whole process of taking a new query and using it to train a model or simply extracting

the entities from the query is visualized in Figure 5.1. There are two different feature

extractions in the end. One for matched, relationship and, numeric model, and another

one for the named entity recognition model. All features use single query versions

of feature extraction, so when a new query comes, the same code which was used to

extract features from the whole dataset can be used to extract feature from a single

query. After feature extraction, four models are trained, tested ,and, trained again, but

this time on whole dataset to get as many examples as possible. These models are then

serialized as .pkl files, which are used to make predictions on new queries. Serial-

ization is done because training new models every time would be too time consuming.

The complete output is in shown in Listing 5.1.

21

{

’AGGREGATION’ : None ,

’DISTINCT ’ : None ,

’LIMIT ’ : None ,

’MATCH’ : (’ c o u n t r y ’ ,

{

’ numeric ’ : F a l s e ,

’ o p e r a t o r ’ : None ,

’ p r o b a b i l i t y ’ : 1 . 0 ,

’ u n i t s ’ : c o u n t r y ,

’ va lue ’ : US

}) ’MATCHED’ : Person ,

’MULTIPLE \ _FITLERS ’ [

] ,

’OPERATOR’ : ’REDUCE’ ,

’ORDER\ _BY ’ : NONE,

’REDUCE\ _FILTER ’ : NONE,

’RELATIONSHIP ’ : LIVES \ _IN . ’ TOP ’ : None ,

’WHERE’ : POSITIVE ,

’ s r c ’ : ’ A c t o r s from US’

}

Listing 5.1: Sample JSON output

After a new query is processed and entities extracted from it, it would form part of

dictionary sent to context.

22

Figure 5.1: Pipeline of query input, process and model training/entity extraction

23

6. Results

Results have been rather encouraging, showing that even with a small amount of train-

ing data, a lot can be precisely deduced about the query.

6.1. Evaluation Methods

Four evaluation scores will be shown for each model:

– accuracy,

– F1 score,

– Precision,

– Recall.

Before defining metrics by [14], following four terms have to be defined [14]:

– True positive,

– False negative,

– False positive,

– True negative.

True positive (TP) is a correctly predicted positive example, false negative (FN) is

a wrongly predicted positive example, positive example predicted as negative, false

positive (FP) is wrongly predicted negative example, negative example predicted as

positive, and a true negative (TN) is correctly predicted negative example as show in

Figure 6.1. With that, the definition of accuracy is as follows:

Accuracy =

∑
TP +

∑
TN∑

TP +
∑
FN +

∑
FP +

∑
TN

(6.1)

While that metric is quite useful, it performs badly on unbalanced datasets. To tackle

that problem, precision and recall are defined:

Precision =

∑
TP∑

TP +
∑
FP

. (6.2)

24

Recall =

∑
TP∑

TP +
∑
FN

. (6.3)

The intuition behind precision lies in the fact that we want to be right in predicting

correct samples, not to predict negative ones as positive, while the intuition behind

recall is that we want to predict correctly as many positive samples as we can, to leave

as little positive samples predicted as negative. Ideally, we would like to have both,

and this is what F1 score stands for– simply a harmonic mean between precision and

recall:

F1 =
2 · precision · recall
precision + recall

. (6.4)

It should be noted that F1 is only a version of Fβ score with β = 1. With β serving

only to adjust importance of precision and recall, the score is defined in the following

manner:

Fβ =
(1 + β2) · precision · recall

(β2 · precision) + recall
. (6.5)

Figure 6.1: Error types, illustration taken from https://alliance.seas.upenn.edu/

6.2. Matched and Relationship Models

Having chosen F1 score as the scoring function, the final F1 score is calculated as

a mean of F1 scores for all prediction classes. Scores are also averages between 5

folds in 80 : 20 split for the bootstrap, meaning the nested cross-validation was per-

formed. Benchmarks for both matched and relationship models are SVM with linear

25

kernel trained with default setting and Word2Vec embedding as the only feature. After

performing cross-validation over all three algorithms, the results are quite interesting.

SVM with linear kernel gives the best result, although not by much; SVM with RBF

kernel performs slightly worse although it performs better than gradient boosting; with

results of those experiments shown in Tables 6.1 and 6.2. Because of this results, the

SVM with linear kernel is chosen to be algorithm to perform feature selection for. Af-

ter feature selection, it turns out that best features for both matched and relationship

model are the same ones. Features that seem to give the best result are: lemmatized

bow, Word2Vec representation of a query, POS ratios, and respective synonyms for

both models. As shown in Table 6.1, results have progressed quite a lot from bench-

mark we started with, but with feature selection it seemed not to improve much outside

of F1 micro score. It should be noted that recall is quite low compared to all other met-

rics. There are two possible reasons for this: similarity between queries that should

be classified with exact entity and ones that should be classified with NONE is quite

small and another human factor that comes into play during annotation. While results

Table 6.1: Matched results

Model Accuracy F1 macro Precision Recall F1 micro

Baseline 64.29% 19.56 16.07 25.00 64.15

SVM linear 89.20% 83.81 96.34 74.17 85.17

SVM RBF 87.50% 81.87 95.45 71.67 85.17

Gradient boost-

ing

85.71% 80.98 91.25 72.78 83.21

SVM linear +

feature selection

89.29% 84.21 96.42 74.76 89.29

for matched entities have been quite good, results for relationships are rather disap-

pointing as seen in Table 6.2 . Although benchmark fares relatively better, subsequent

improvements have been far less noticeable than for matched entities. Another inter-

esting thing to note here is the fact that the linear and RBF kernels gave exactly the

same results. Here precision and recall are more evened out, even though they aren’t

high. All scores for the matched and the relationship model are averaged across 5 splits

of dataset to a train and the test set, this was done because of the bootstrap usage. That

in turn means hyperparameters calculation each time was done with a nested 10-fold

cross-validation.

26

Table 6.2: Relationship results

Model Accuracy F1 macro Precision Recall F1 micro

Baseline 71.42% 20.83 18.18 24.39 69.67

SVM linear 80.38% 66.84 57.69 79.46 79.46

SVM RBF 80.38% 66.84 57.69 79.79 79.46

Gradient boost-

ing

78.57% 50.71 44.24 59.39 77.24

SVM linear +

feature selection

82.14% 67.40 58.02 80.38 82.00

Non-parametric method bootstrap is used to show whether there really was any

improvement over benchmark at the end. Bootstrap takes samples from data provided

(in this case it takes samples from the test set, 20% of the total dataset) so it can

give estimates of property of estimator; here difference between F1 scores (to be more

precise, we are testing whether there is any statistically significant difference between

results of both models). Samples are sorted by score and based on percentile we give

our estimator estimates. For both matched and relationship zero hypothesis is the same;

there is no difference between the benchmark and the final model F1 score. In both

cases 10000 iterations were used.

H0 = 0 (6.6)

Having chosen a 5% two-sided test we are looking if at least 5% of the pooled data

is more extreme than H0, and by counting those occurrences and then dividing them

by the number of samples we obtain p-value. For the matched model p-value of the

F1 macro score is 0.0160, and for the F1 micro score p-value is 0.0014. Relationship

models yield similar values with the F1 macro p-value being 0.0033, and the F1 micro

p-value score being 0.0037. None of those p-values are 0.05 (our chosen significance

level) or larger which leads to the rejection of H0 and conclusion there is a statistically

significant difference between benchmark and final models.

6.3. Numeric Model

Since there is a comparable number of both numeric and non-numeric parameters to

be extracted in dataset, accuracy is chosen as scoring function. Model results can be

27

seen in Figure 6.2. Good results shown in Table 6.3 coming from such a simple system

as this one should be taken with care: in the dataset there are no addresses or any

other similar entities consisting of both numeric and non-numeric part. With accuracy

around 91%, there is still place for improvement (adding address regex, checking if

cardinal number is written in capital letters as in a movie name, etc.) and decision tree

visualization can help us with that.

hasnumber ≤ 0.5
gini = 0.4037

samples = 221
value = [159, 62]

class = Non numeric

haswrittennumber ≤ 0.5
gini = 0.0822

samples = 163
value = [156, 7]

class = Non numeric

True

haswrittennumber ≤ 0.5
gini = 0.0981
samples = 58
value = [3, 55]

class = Numeric

False

gini = 0.0268
samples = 147
value = [145, 2]

class = Non numeric

hascardinal ≤ 0.5
gini = 0.4297
samples = 16
value = [11, 5]

class = Non numeric

gini = 0.4444
samples = 15
value = [10, 5]

class = Non numeric

gini = 0.0
samples = 1
value = [1, 0]

class = Non numeric

gini = 0.1128
samples = 50
value = [3, 47]

class = Numeric

gini = 0.0
samples = 8
value = [0, 8]

class = Numeric

Figure 6.2: Numeric / non numeric decision tree

Table 6.3: Numeric results

Model Accuracy F1 macro Precision Recall F1 micro

Decision tree 91.07.% 89.90 89.40 90.49 91.07

An interesting thing to note from Figure 6.2 is that, whenever a written number

occurs, it is far more likely that the entity is non numeric if that number is a cardinal

number.

28

6.4. Named Entity Extraction Model

Named entity recognition produced very good results, considering how little training

data there actually was. Overlapping (showing whether the right words are chosen as

named entities) F1 score is 91.27 and F1 score for overlapping and actually predicting

the correct label is 83.58. The reasoning behind why there is a lot of examples were

the classifier guessed correctly that given words were part of named entity but failed

to classify them in the correct class could be the fact that there aren’t many training

examples, for instance multiword country names such as South African Republic are

classified as name instead of country. Another concern is that, while the results are

quite good, the classifier will match multiple named entities in the same query when

it should really only classify one, as this is the convention by which the dataset was

annotated. For instance, All movies from United States. While it will correctly predict

United States as a country, the word movies will also be classified as beginning of the

property, not “Outside”.

29

7. Conclusion

With the ability to access greater and greater sources of knowledge, the ability to

present it in the right way is also becoming important. One way of modeling and

visualizing data are graph databases. As current interfaces are to complicated for the

ordinary user, the ability to input queries in natural language, to talk to a database,

would be of great help to the end user. The approaches where one creates custom

chatbots, such as API.AI fail in this endeavor.

The topic of this thesis was the task of entity recognition and extraction from natu-

ral language queries to a database. Four models for extraction have been developed to

extract in the end, to extract matched, relationship, numeric, and non numeric named

entities. While models work reasonably well given the amount of data, there is still

work for improvement. Scores for named entity extraction are especially good, consid-

ering prior work, which reports performance in the 85–90 range[18]. One possibility

to improve named entity recognition would be to make sure only one entity is being

extracted from the query at the time. As for matched and relationship classification,

it would be interesting to try deep learning methods with already trained models and

trying to improve them with synonyms and antonyms learning [3].

One of the lessons learned was that building a system for named entity extrac-

tion from natural language queries is much easier if the system is focused on a specific

database, rather than a general one because general one would require way more exam-

ples, where perhaps lexicons with domain specific knowledge could be used to enhance

performance.

There are a number of interesting experiments that come to mind when thinking

where one could go next: creation of this interface for another language, e.g. Croatian,

German, etc. , and other languages of interest, or to take another domain-specific and

see if there were any domain specific features here that conditioned the performance.

This interface could also be enhanced with a better user interface and speech recog-

nition capability.

30

BIBLIOGRAPHY

[1] Steven Bird. Nltk: the natural language toolkit, 2006.

[2] Christiane Fellbaum. Wordnet, 1998.

[3] Joo-Kyung Kim, Gokhan Tur, Asli Celikyilmaz, Bin Cao, i Ye-Yi Wang. Intent

detection using semantically enriched word embeddings, 2016.

[4] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya

Kawakami, i Chris Dyer. Neural architectures for named entity recognition, 2016.

[5] Oded Z Maimon i Lior Rokach. Data mining with decision trees: Theory and

applications (series in machine perception and artifical intelligence), 2008.

[6] Mitchell P Marcus, Mary Ann Marcinkiewicz, i Beatrice Santorini. Building a

large annotated corpus of english: The penn treebank, 1993.

[7] Llew Mason, Jonathan Baxter, Peter L Bartlett, i Marcus R Frean. Boosting

algorithms as gradient descent., 1999.

[8] Donald Metzler i W Bruce Croft. Analysis of statistical question classification

for fact-based questions, 2005.

[9] Tomas Mikolov, Kai Chen, Greg Corrado, i Jeffrey Dean. Efficient estimation of

word representations in vector space, 2013.

[10] Einat Minkov, Richard C Wang, i William W Cohen. Extracting personal names

from email: Applying named entity recognition to informal text, 2005.

[11] Tom M. Mitchell. Machine learning, 1997.

[12] David Nadeau i Satoshi Sekine. A survey of named entity recognition and clas-

sification, 2007.

31

[13] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python, 2011.

[14] David Martin Powers. Evaluation: from precision, recall and f-measure to roc,

informedness, markedness and correlation, 2011.

[15] Cicero Nogueira dos Santos i Victor Guimaraes. Boosting named entity recogni-

tion with neural character embeddings, 2015.

[16] Burr Settles. Abner: an open source tool for automatically tagging genes, proteins

and other entity names in text, 2005.

[17] Charles Sutton, Andrew McCallum, et al. An introduction to conditional random

fields, 2012.

[18] Erik F Tjong Kim Sang i Fien De Meulder. Introduction to the conll-2003 shared

task: Language-independent named entity recognition, 2003.

[19] Simon Tong i Daphne Koller. Support vector machine active learning with appli-

cations to text classification, 2001.

32

Entity Recognition and Classification for a Natural Language Database Interface

Sažetak

Zbog uvijek prisutne ljudske potrebe za razumijevanjem što većih količina po-

dataka i rasta računalne snage baze grafova dobivaju na popularnosti. Još jedan korak

k boljoj integraciji čovjeka i računala jest izrada jezičnog sučelja za komunikaciju s

takvom bazom. U ovom radu razvijen je i ispitan sustav za izvlačenje entiteta iz upita

u svrhu izgradnje takvog sučelja, pogotovo imenovanih entiteta te su u tu svrhu iz-

grad̄ena četiri modela. Dobiveni rezultati su ohrabrujući, te pokazuju da se i na vrlo

malom skupu podataka mogu naučiti modeli koji rade sa specijaliziranim upitima.

Ključne riječi: Obrada prirodnog jezika, Izvlačenje imenovanih entiteta, stroj pot-

pornih vektora, stabla odluke, CRF, jezično sučelje, graf baza podataka.

Entity Recognition and Classification for a Natural Language Database Interface

Abstract

Because of the always present human need for understanding big quantities of data

and computer power growth, graph databases are gaining in popularity. Another step in

a better connection of human and the computer would be a natural language interface

for communication with such a database. This thesis describes the development and

evaluation of a entity extraction from queries, which is part of such natural language

interface. Special attention was given to named entity extraction. Four models were

built for this purpose. End results are encouraging, showing that even on small datasets

models can be created to deduct from specialized queries.

Keywords: Natural language processing, Named entity extraction, support vector ma-

chine, decision trees, CRF, natural language interface, graph database

