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1 Introduction

The problem of plagiarism has plagued the academic community ever since its
inception. The University of Oxford defines plagiarism as presenting the work
or ideas of others as your own without proper acknowledgement.1 They further
expand into eight forms of plagiarism:

– uncredited verbatim quotation,
– unreferenced copying of information from the Internet,
– paraphrasing the work of others without acknowledgement,
– collusion with other students,
– inaccurate citation of other’s work,
– failure to acknowledge assistance of others,
– use of material written by professionals or other people, and
– self-plagiarism.

Of these eight, the system described here will be taking into consideration the
first three forms, with certain limitations.

Plagiarism is an issue that’s at the same time both widespread and hard to
uncover. Manual detection, which was for a long time the only possible defense
against plagiarism, is time consuming and requires extensive domain knowledge
to even perform correctly. Thus, with the increasing computing power available
and the advancements of artificial intelligence, many have tried, with varying
success, to automate this arduous task. The prime example of this is the PAN
series of authorship tasks competitions.2

Obtaining real world datasets for training plagiarism detection models is al-
most an impossible task due to various legal and ethical issues accompanying
plagiarism cases. As such, custom syntetic datasets are often built for these pur-
poses. One example of this is PAN’s source retrieval dataset, however datasets
from related problems, such as Microsoft’s paraphrase detection corpus, are also

1https://www.ox.ac.uk/students/academic/guidance/skills/plagiarism?wssl=1#
2http://pan.webis.de/
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frequently used.34

Getting hold of such datasets for cross-lingual plagiarism is an even bigger
challenge, especially for languages without a large number of speakers, such as
Croatian. Wikipedia, the largest online encyclopedia, is a vast source of free
knowledge in today’s world. It comes at no surprise that this also makes it one
of the most common targets for plagiarism. It is with this in mind that a custom
dataset based on Wikipedia articles in the domain of machine learning was built.

The system presented here attempts to detect plagiarism cases in Croatian
papers with English Wikipedia articles as sources. The model compares poten-
tial plagiarism targets and their respective sources by applying various syntactic
and semantic features and then classifying them as plagiarisms or not. A local
Wikipedia search engine is used to reduce the otherwise unwieldy search space,
and commercial translation services are used to translate Croatian texts into
English.

The thesis is split into six chapters, along with an appendix covering sup-
plementary material. The next chapter examines the current state of both the
mono-lingual and the cross-lingual plagiarism detection, and how the approach
presented in this thesis supplements and/or differs from the outlined methods. In
chapter 3, we go into a detailed analysis of the dataset creation, its further pro-
cessing, and finally its representation and use in the training and the evaluation
of the system. Chapter 4 describes the syntactic and semantic features used, the
system’s interaction with the dataset, as well as the methods used to train and
evaluate the model. Finally, chapter 5 takes a deep look into the resultant data
and analyzes the common errors encountered. The appendix A covers some of
the more important implementation details specific to the exact platforms and
libraries the system was built upon.

3http://pan.webis.de/clef15/pan15-web/plagiarism-detection.html
4https://www.microsoft.com/en-us/download/details.aspx?id=52398
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2 Related Work

The area of plagiarism detection can be roughly split into two problems, intrin-
sic and extrinsic plagiarism detection. Intrinsic plagiarism detection deals with
stylistic changes in a suspicious document undern an assumption that it’s hard
to plagiarise a source document while maintaining the document’s stylistic pat-
terns, the level of sophistication, and other such features. Extrinsic plagiarism,
on the other hand, deals mainly with source retrieval, i.e., it attempts to discover
plagiarism cases by comparing a suspicious text against potential sources, and
making predictions based on a combination of syntactic and semantic features
that appear in the compared texts. Extrinsic plagiarism detection is tightly re-
lated to the problems of paraphrase identification, string similarity, and string
relatedness. In this chapter, we’ll take an overview of the current state of the
field of extrinsic plagiarism detection and the various methods employed.

University of Weimar’s PAN competition offers a variety of plagiarism-related
tasks, from source retrieval and intrinsic plagiarism detection, to authorship iden-
tification and profiling. As such, it has certainly played a big role in the ad-
vancement of the field. In the area of mono-lingual plagiarism detection, PAN’s
synthetic extrinsic plagiarism corpus is, due to its large size, the most widely used
dataset.1

Madnani et al. (2012) explore the use of eight different machine translation
evaluation metrics in the setting of paraphrase identification. We borrow a num-
ber of features from this work, namely the BLEU, NIST, and TER-Plus metrics
(see sections 4.2.4, 4.2.5, and 4.3.1, respectively), as well as the general idea of
applying machine translation metrics to NLP tasks other than machine trans-
lation evaluation itself. Interestingly, they make use of both the PAN’s source
retrieval dataset, and the Microsoft’s paraphrase detection corpus, despite the
PAN dataset not being specifically focused on paraphrase identification. One of
the more interesting findings of this work is that TER-Plus by itself is capable of

1http://pan.webis.de/clef15/pan15-web/plagiarism-detection.html
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outperforming many older paraphrase identification systems, most of which are
substantialy more complex.

Ji and Eisenstein (2013) achieve state-of-the-art performance in the task of
paraphrase identification by applying latent semantic analysis in combination
with discriminative feature weighting. What makes this approach even more in-
teresting is the use of transductive learning in the matrix decomposition phase.
Transductive learning here signifies the use of both the training and the test
dataset in that specific phase. Ji and Eisenstein utilize latent semantic analysis
for classification by converting latent semantic representations of compared sen-
tences, i.e., their LSA vectors, into a sample vector of the form [~v1 + ~v2, |~v1 − ~v2|].
We have taken a very similar approach, extending the sample vector with the co-
sine difference of the two latent vectors.

Hassan and Mihalcea (2009) explore the use of multi-language encyclopedic
knowledge for the task of cross-lingual semantic relatedness. To accomplish this,
they utilize the links between the Wikipedia articles’ translations to build the
concept vector representations of words through explicit semantic analysis. While
it’s a novel idea which shows great results, its usefulness greatly diminishes for our
task due to the Croatian Wikipedia’s lacking coverage. Instead, we’ll be basing
our dataset on the English Wikipedia alone, while taking the papers tested for
plagiarism from Croatian into English through the use of commercial translation
services.

Another interesting approach, which greatly differs from ours and the previ-
ously mentioned ones, is that of Franco-Salvador et al. (2013), who apply knowl-
edge graph analysis to the task of cross-language plagiarism detection. For each
suspicious target–source pair they build a knowledge graph using a multilingual
semantic network, such as BabelNet, and compute the probability of it being
plagiarised by applying graph similarity metrics to the obtained graph.

Our particular model utilizes a combination of syntactic and semantic features
to compare potential plagiarised texts and their respective sources. The input
texts are first translated from Croatian into English by one of commercial trans-
lation services, a comparison of which is also made. The potential plagiarism
sources are obtained through a latent semantic indexing–based search engine of
text fragments from Wikipedia articles. Finally, binary classification backed by a
support vector machine with the RBF kernel is performed, determining whether
pairs of potential plagiarisms and their respective sources are in fact plagiarisms.

4



3 Dataset

As with all natural language processing tasks, the dataset is one of the most
crucial parts of the system. With that in mind, the following sections will describe
in detail the process of obtaining and working with the data used throughout this
work.

3.1 Paper Generation

Good, realistic, plagiarism detection datasets are incredibly hard to come by.
When extended to cross-lingual plagiarism, this problem becomes even more pro-
nounced.

Since our source corpus is a subset of Wikipedia, it would only make sense
to also base our suspicious papers dataset on the same subset. A selection of
around 40 text fragments were extracted from the said subset to be used for paper
generation. These fragments were selected on the basis of how likely they are
to be plagiarised by actual students. It was noted that students most frequently
plagiarise the introduction and the highly technical parts, as both of these require
substantive knowledge to write, or even discreetly plagiarise, in a meaningful way.
With this in mind, most of the fragments selected came from these sections of
the articles.

As the target language is Croatian, these fragments had to be translated
to Croatian, so as to simulate cross-lingual plagiarism. Even though today’s
translation service are rather advanced, as will be discussed later in chapter 4,
the quality of their output on complex sentences still cannot be compared to that
of a human being. As such, human annotators were employed to translate these
fragments into Croatian.

In order to make the task of detection more realistic, and therefore harder,
non-plagiarised cases were introduced into the dataset. These non-plagiarised
cases were hand-made by taking the existing Croatian translations and heavily
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paraphrasing them while at the same time removing existing, or adding new
information into the fragment. An example of the introduced plagiarised and
non-plagiarised fragments can be seen in the table 3.1.

One great drawback of this approach is the large amount of human labor for
the annotation task and subsequently the small dataset. Based on the desired
document size and the plagiarism percentage, a requested number of documents
are randomly generated from the collected text fragments. The actual evaluation
was done these exact documents.

3.2 Wikipedia Corpus

Before we begin devising methods of actual plagiarism detection, we need a way
to access the contents of Wikipedia articles. Searching the online Wikipedia while
running our system would be incredibly slow and would probably pose quite a few
difficulties while training the system itself. Therefore a more employable method
would be to download Wikipedia articles beforehand and compose a dataset of
articles to perform our detection against.

Since working on the whole Wikipedia corpus would introduce, for the scope of
this work, a lot of engineering problems, we’ll only consider a subset of Wikipedia.
This subset is defined through a Wikipedia category.1 For the purposes of this
work, “Machine learning” was chosen for the root category and all the plagiarised
paper examples were generated from Wikipedia pages in that area. Note however,
that the methods described in this work are category-agnostic and could easily be
applied to any other category, irrelevant of its size, or even the whole Wikipedia
by supplying “Main topic classifications” as the root category.

Once the root category is defined, we need to obtain all of the pages contained
in that category, as well as in all of its subcategories, their subcategories, etc.
To accomplish this, first the list of all the subcategories included is built by
recursively navigating the WikiMedia’s public API, namely its Categorymembers
function.2 Then, the list of all pages contained in those subcategories is built and
any unwanted pages are filtered out. These unwanted pages consist of duplicates,
since articles can be, and often are, contained under multiple categories, as well as
Wikipedia meta-pages such as portals, user pages, and other similar pages which

1https://en.wikipedia.org/wiki/Help:Category
2https://www.mediawiki.org/wiki/API:Categorymembers
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Table 3.1: Plagiarised and non-plagiarised fragments for paper generation.

Original:
In machine learning, a convolutional neural network (CNN, or ConvNet) is a
type of feed-forward artificial neural network in which the connectivity pattern
between its neurons is inspired by the organization of the animal visual cor-
tex. Individual cortical neurons respond to stimuli in a restricted region of space
known as the receptive field. The receptive fields of different neurons partially
overlap such that they tile the visual field. The response of an individual neuron
to stimuli within its receptive field can be approximated mathematically by a con-
volution operation. Convolutional networks were inspired by biological processes
and are variations of multilayer perceptrons designed to use minimal amounts
of preprocessing.

Plagiarised:
Kod strojnog učenja, konvolucijska neuronska mreža (CNN, ili ConvNet) je vrsta
feed-forward umjetne neuronske mreže u kojoj je spojni uzorak između neurona
inspiriran organizacijom vidne kore životinja. Individualni kortikalni neuroni
odgovaraju na podražaje u ograničenom dijelu prostora poznatom kao recep-
tivno polje. Receptivna polja različitih neurona se preklapaju tako da popločavaju
vizualno polje. Odgovor pojedinačnog neurona na podražaje unutar svog recep-
tivnog polja se može matematički aproksimirati konvolucijskim postupkom. Kon-
volucijske mreže su bile inspirirane biološkim procesima te su varijacije višeslo-
jnih perceptrona dizajniranih kako bi koristili minimalne količine predprocesir-
anja.

Non-plagiarised:
Jedan danas vrlo popularni tip višeslojnih neuronskih mreža su konvolucijske
neuronske mreže. Kao što se iz imena može zaključiti, ove neuronske mreže
su bazirane na matematičkoj operaciji konvolucije, s kojom na jednoj vrlo po-
jednostavljenoj razini modeliraju rad vidnog sustava životinja, pa tako i nas
samih. Procesom konvolucije se omugućava da svaki pojedinačni neuron djeluje
u poprilično uskom dijelu prostora, dok preklapanjem podražajnih područja većeg
skupa neurona dobivamo konkretno vidno polje. Kao i druge slične višeslojne,
ili duboke, neuronske mreže, konvolucijske neuronske mreže ne iziskuju velike
količine predprocesiranja ulaznih podataka.
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serve little purpose to us.34 These meta-pages can be easily detected by special
prefixes (or as Wikipedia refers to them, namespaces) in their page names, in
fact categories themselves fall into this category.5 These prefixes are of the form
“Namespace:”, e.g., “Category:”, “Portal”, “User:”, “Textures:”, etc.; and can
easily be filtered out. To get a sense of scale when working with the categories,
“Machine learning” contains 1078 articles at the time of writing, “Computer
science” includes around 10 thousand pages, while the whole Wikipedia consists
of a whopping 5.4 million articles.

With the list of pages to download obtained, they have to be downloaded and
parsed into plain text for the use with the rest of the system. While Wikipedia
offers their articles in the wikitext markup format, they often make use of various
templates which are then converted to HTML for displayal.6 This makes it hard
to get the full content out, even with the use of text conversion tools such as
Pandoc.7 Instead, the page is fetched in a stripped down version by adding an
action=render parameter to the HTTP request.8 This version contains only the
main content without any sidebars and similar elements which might make the
job of parsing even harder. The stripped down page is then parsed by an HTML
parser into a structure that’s easier to work with. From the obtained structure all
unwanted elements such as images, and all the unwanted sections such as tables
of contents, references, external links, and similar, are removed. Just as in section
3.1, equations and other mathematical notation are replaced with <\m> tokens,
and finally the actual text is extracted.9

3.3 Paper Representation & Preprocessing

Each paper is first tokenized into sentences, and each of these sentences are further
individually tokenized into words and a lower case transformation is applied. The
resulting structure of documents is then searched for sentences of length shorter
than a specified sentence length threshold, and such instances are concatenated
to their neighbours until each sentence meets the length requirement. Finally,

3https://en.wikipedia.org/wiki/Wikipedia:Portal
4https://en.wikipedia.org/wiki/Wikipedia:User_pages
5https://en.wikipedia.org/wiki/Wikipedia:Namespace
6https://www.mediawiki.org/wiki/Wikitext
7http://pandoc.org/
8https://www.mediawiki.org/wiki/Manual:Parameters_to_index.php
9https://en.wikipedia.org/wiki/Wikipedia:Rendering_math
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Figure 3.1: Illustration of the document windowing for a window size of 3.
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Document

moving windows of w sentences, with each window being shift by one with respect
to the previous, are generated and joined into strings. An illustration of the
windowing process can be seen in Figure 3.1.

The number of these windows for a given document d can be computed with
the following equation:

|windowsw(d)| = |sentences(d)| − w + 1 (3.1)

The X[i,j] notation used in these expressions, as well as throughout the rest of
the thesis, represents array slicing, i.e., taking a subarray, or a slice, of an array
X contained between indices i and j.10 This operation can be expressed more
formally as X[i,j] = [Xi, Xi+1, . . . , Xj].

In order to build a set of training examples, we need to find all relevant
combinations of suspicious document windows and Wikipedia article windows.
For each source Wikipedia fragment and its plagiarised counterpart, we need to
find all windows in the Wikipedia article and the generated paper, which contain
at least a single sentence of their respective fragments. We then need to match all
such Wikipedia fragment-window pairs, (Fw, Y ), with all their relevant document

10This operation is equivalent to Python’s slicing operation, i.e., X[i:j+1] (note the exclusive
end index).
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fragment-window pairs, (Fd, X), and compute the plagiarism score, plag (eq. 3.2)
for each such match.

The value of this plagiarism score is a weighted sum of (a) the portion of the
source Wikipedia fragment included in the Wikipedia window, plagy (eq. 3.4),
and (b) the portion of that portion included in the paper window, plagx (eq. 3.3).
Additional care is taken not to unnecessarily penalize window sizes smaller than
the plagiarised fragment’s sentence count by taking into account the length of
the closest window of the Wikipedia fragment of size w, instead of the length of
the whole fragment. This effectively means that a window containing the whole
plagiarised fragment, due to the sentence count of such fragment being lower than
the window size, would have the same plag score as a window containing only a
portion of a much larger plagiarised fragment, as long as the window contained
no other text other than that portion.

plag = wx · plagx + wy · plagy (3.2)

plagx =


∑
XP ∩ YP/

∑
YP if YL 6= Ø ∨ YR 6= Ø,

1 otherwise.
(3.3)

plagy =


min

{
1, ∑YP/

∑
P[0,min{w,|P |}]

}
if YL 6= Ø ∧ YR = Ø,

min
{

1, ∑YP/
∑
P[max{0,iy+|YP |−w},iy+|YP |]

}
if YL = Ø ∧ YR 6= Ø,

1 otherwise.
(3.4)

Figure 3.2 shows how the plag score changes as we move our window along
the relevant regions of the Wikipedia article and the suspicious paper, with three
different weighing schemes for comparison. In the same plot, positions in the
Wikipedia article and in the paper represent window indices, e.g., point (0, 3)
signifies the plag score between the first windows of the suspicious text and the
fourth window of the Wikipedia article. The exact texts used for the computation
of the said plot can be found in the table 3.2.

One important question remains – how do we interpret these scores? There
are two main approaches that can be taken here, (a) we can either consider these
values as signifiers of the extent to which a text is plagiarised with respect to some
source and build a regression-based model which would make the same kind of
predictions on the unseen texts, or (b) we can set up a binary classification model

10



which applies a threshold function to each of these scores, taking them from the
real domain to binary categories, Plagiarism and Non-Plagiarism. We have
opted for the second approach, setting the threshold at an arbitrary value of
0.5, as this generally assigns Non-Plagiarism category to all examples which
contain only a small fraction of the plagiarised fragment, e.g., a window size of
five which only includes a single sentence of a five sentence plagiarised fragment.

The dataset consists of 38 plagiarised Wikipedia fragments, with a median
sentence count of 3, and 27 non-plagiarised Wikipedia fragments. After window-
ing and matching with Wikipedia fragments, we end up with a couple of thousand
of paper window–Wikipedia window examples, ranging from 864 for a windows
size of one, to 3,887 examples for a window size of six.

3.4 Wikipedia Search Engine

Comparing a paper against the whole Wikipedia corpus would be incredibly inef-
ficient, thus a search engine would go a long way in reducing the search space. A
simple, configurable, latent semantic analysis–based search engine was built for
this purpose and trained on the whole Wikipedia corpus. The tf–idf measure and
the latent semantic analysis will be properly introduced later in sections 4.3.3
and 4.3.4, respectively.

The engine’s text corpus consists of windowed text fragments instead of the
whole documents. To accomplish this, each article undergoes the same transfor-
mations as the papers in the section 3.3, resulting in a sequence of windows of size
w with a stride of one. The actual search will be performed on these generated
windows.

To perform a meaningful search with as little noise as possible, we first need to
extract the fragment’s keywords. To do so, the tf–idf vector of the given fragment
is obtained through the engine’s corpus-fitted tf–idf transformer. Then, the tf–idf
vector’s indices are sorted by their tf–idf value in descending order. Finally, the
desired amount of indices are taken from the top and mapped to their respective
tokens, the exact number of which can be configured in the query itself. These
tokens are the keywords to be used for the actual search.

The search itself, once we have the keywords, boils down to joining the key-
words into a single string and computing the cosine similarity between the corpus-
fitted LSA transform of the said string and each Wikipedia window’s LSA vector.
Similarly to the keyword extraction, the cosines’ indices are then sorted and the

11



Figure 3.2: Example of plag scores for the texts in the table 3.2.
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Table 3.2: Example of the sentences included in the windows around a plagiarised
fragment for the window size of 3. The highlighted sentences in the first and second
text represent the plagiarised fragment and its source, respectively.

English (NMT):
The main goal of the learner is to generalize one’s own experience. Generalization
in this context is the ability of a machine that learns to do exactly on new, unseen
examples/tasks after passing the learning data set. Load training in the neural net-
work can be modeled as a nonlinear global optimization problem. The target function
can be formatted by estimating the readiness or error of a given load vector as follows:
First, the loads in the network are set according to the vector load. Then the network
is evaluated against the exercise sequence. Usually, the squared sum difference between
prediction and target values specified in the exercise sequence is used to display the error
of the current load vector. Optional global optimization techniques can then be used to
minimize this targeted function. The problem of recognizing named entities is basically
reduced to the problem of detection of the name, which in itself is reduced to the problem
of segmentation, and to the classification itself of the detected names. Undetectable
machine learning is the task of machine learning to perform a function that will describe
hidden structures from “unmarked” data (classification or categorization is not included
in the observations).

Wikipedia:
The CRBP algorithm can minimize the global error; this fact results in an improved
stability of the algorithm, providing a unifying view on gradient calculation techniques
for recurrent networks with local feedback. An interesting approach to the computation
of gradient information in RNNs with arbitrary architectures was proposed by Wan and
Beaufays, is based on signal-flow graphs diagrammatic derivation to obtain the BPTT
batch algorithm while, based on Lee theorem for networks sensitivity calculations, its fast
online version was proposed by Campolucci, Uncini and Piazza. Global optimization
methods Training the weights in a neural network can be modeled as a non-linear global
optimization problem. A target function can be formed to evaluate the fitness or error of
a particular weight vector as follows: First, the weights in the network are set according
to the weight vector. Next, the network is evaluated against the training sequence. Typ-
ically, the sum-squared-difference between the predictions and the target values specified
in the training sequence is used to represent the error of the current weight vector. Ar-
bitrary global optimization techniques may then be used to minimize this target function.
The most common global optimization method for training RNNs is genetic algorithms,
especially in unstructured networks. Initially, the genetic algorithm is encoded with
the neural network weights in a predefined manner where one gene in the chromosome
represents one weight link, henceforth; the whole network is represented as a single
chromosome.

13



requested number of them are taken from the top and mapped to their respective
Wikipedia windows.
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4 Model

Here, we’ll be taking a look at the semantic and syntactic features used, as well
as address the task of classification. Also, we’ll cover the available translation
services and see how they compare against each other subjectively. The features
used for classification were very much inspired by the works of Madnani et al.
(2012), and that of Ji and Eisenstein (2013).

4.1 Translation Models

Before processing a suspicious document in Croatian, it has to be translated to
English in order to seamlessly work with the previously built English Wikipedia
corpus. To accomplish this, two state-of-the-art translation services, Google
Cloud Platform’s Translate service and the Microsoft Azure’s Translator, were
used.12 Since Google offers two different models through its platform, we’ll be
taking a look at both of them, bringing the total number of translation models
up to three.

These three models consist of: Google’s Phrase-Based Machine Translation
(PBMT) and Neural Machine Translation (GNMT) translation models, and the
Microsoft Translator ’s “general” translation model (henceforth referred to as
MST). Google’s, now outdated, PBMT model is, just like the Microsoft’s Trans-
lator, a statistical, phrase-based, machine translation model. On the other hand,
GNMT is a modern translation model based on recurrent neural networks. Un-
like the phrase-based models, it attempts to translate the input text as a whole,
without breaking it up into phrases or words, which often leads to the translations
feeling much less artificial when compared with the statistical models (Wu et al.,
2016). Generally, the neural network–based models have proven to be much more
natural and closer to actual human translations, than the statistical models. As

1https://cloud.google.com/translate/
2https://www.microsoft.com/en-us/translator/home.aspx
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Table 4.1: Complex sentence translation comparison – example one.

Source Problem učenja se svodi na generalizaciju prijašnjih iskustava, odnosno,
modeliranje algoritma i podataka kako bi omogućili stroju da na osnovu
ulaznog skupa podataka za treniranje donosi što točnije zaključke o još
neviđenim podacima.

PBMT The problem of learning is reduced to the generalization of previous experi-
ence, or modeling algorithms and data to enable the machine on the basis
of the input data set for training yields the most accurate conclusions about
the still unseen data.

GNMT The learning problem is reduced to the generalization of previous experi-
ences, ie, modeling of algorithms and data to enable the machine to draw
on as accurate as possible conclusions from unexamined data based on the
input data set for training.

MST The problem boils down to learning generalization of previous experiences,
that is, the modeling of the algorithm and data to enable the machine to
on the basis of input data set for training brings as accurately as possible
the conclusions of another unprecedented data.

will be evident from the given examples and the results themselves, the neural
network–based model seems to be much closer to what an actual human transla-
tion would look like when compared to statistical models. It should be noted that
Microsoft too offers a solution based on neural networks, however at the time of
the writing it did not support Croatian language.

Differences between these models and the methods they employ result in stark
differences in the translation quality. Table 4.1 showcases these differences on an
example in which all three services seem to output something of value. On the
other hand, table 4.2 shows an example which proves problematic for all tested
models, even resulting in an incomplete translation by Microsoft Translator.

4.2 Lexical Overlap Features

These features make use of basic lexical relationships between text fragments.
This includes simple n-gram features, such as intersection measures, as well as
more advanced metrics such as BLEU and NIST which make use of exhaustiveness
and information content. This includes counts of syntactic structures, simple n-
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Table 4.2: Complex sentence translation comparison – example two.

Source Konvolucijski sloj je glavna gradivna jedinica CNN-a. Parametri sloja se
sastoje od para filtera (ili jezgri) koji mogu učiti te imaju maleno receptivno
polje, ali se proširuju kroz cijelu dubinu volumena inputa.

PBMT Convolutions layer is the main structural unit of CNN. Condition parame-
ters is comprised of a pair of filters (or cores) that can learn and have small
receptive field, or extend through the entire depth of the input volume.

GNMT The conveying layer is CNN’s main building block. The layer parameters
consist of a pair of filters (or cores) that can be taught and have a small
receptive field, but extend across the full depth of input volume.

MST Konvolucijski layer is the main building, a unit of CNN. Parameters of the
layers consist of pairs of filters (or cores) that can learn, and have a small
receptive field, but extend through the entire depth of the volume of inputs.

gram features, as well as more advanced metrics such as BLEU and NIST which
make use of exhaustiveness and information content.

4.2.1 Counting Features

Word, sentence, and/or character counting features can, despite their simplicity,
offer good support to other features. For this reason, they can be frequently found
in many NLP task’s models. In this work, only one such feature was implemented,
a word count ratio of two fragments.

Another potentially useful counting feature would be a metric describing the
difference in the complexity of two compared texts. Coleman and Liau (1975)
propose just such a metric, the aptly named Coleman-Liau index. The index is
a rather simple linear function of the ratios of the character and sentence counts
to the word count. It attempts to score the text in question on a U. S. grade
level scale, with 1 corresponding to the first grade of elementary school, 12 being
the last grade of high school, and anything greater belonging to the university or
college education.3 For our own scoring, the two compared documents’ Coleman-
Liau indices were computed and their absolute difference was taken.

3https://www.ais.edu.hk/age-grade-guide
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CLI (X) = 5.88 · |characters(X)|
|words(X)| − 29.6 · |sentences(X)|

|words(X)| − 15.8 (4.1)

It should be noted that this is far from being the only such metric. A wide
range of them were developed over the years, ranging from straightforward mea-
sures such as Coleman-Liau, to more complex ones taking syllable counts and
other language constructs into account. This exact metric was chosen for being
simple while still retaining useful information.

Another similar metric, the automated readability index (Senter, 1967) was
also tried, but showed very little correlation with the results in the preliminary
stages, and was subsequently left out entirely.

4.2.2 Common N-Gram Features

The following two measures, precision and recall, are usually used in the result
analysis of prediction tasks. Here, however, we’ll be using them as operations over
sets, quantifying the relationship between some two sets and their intersection.
Both measures’ codomains cover the real interval of [0, 1], where a higher score
indicates better results, or in our case, similarity. These sets will represent two
text fragments, or more precisely, the two text windows, being compared. Let X
denote the suspicious text and Y the potential source text, for the purposes of
this and all subsequent examples.

In terms of classification results, precision (eq. 4.2) is the measure of how
many of our results are correctly classified, or in other words, how confident we
are in our predictions. On the other hand, recall (eq. 4.3) is the measure of how
many examples that should have been classifed, have actually been classified. In
our specific context, precision is simply the quotient of words from the suspicious
document included in the source document, while recall is the quotient of words
from the source document included in the suspicious document. These metrics
are often at odds with one another as increasing one usually results in the fall of
the other.

π = TP
TP + FP = |X ∩ Y |

|X|
(4.2)

ρ = TP
TP + FN = |X ∩ Y |

|Y |
(4.3)
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Table 4.3: Example of basic n-gram features with n = 1.

Sentence π ρ F1 Fmean

“I cannot accept such a proposal.”
0.67 0.8 0.73 0.78

“I don’t accept such proposals.”

Due to their dual nature, precision and recall are often used together to score
the system. However, single value metrics are usually preferred over multiple
value ones. Thus, metrics that combine and balance these two measures into a
single value have been developed. One of these is the harmonic mean of precision
and recall, the F1 score, shown below:

F1 = 2 · π ρ

π + ρ
(4.4)

Lavie et al. (2004) showed that in the task of machine translation evaluation,
recall corresponds much more to the human judgement of such translations than
precision does. To exploit this, they devised an adjusted harmonic mean metric,
Fmean (eq. 4.5), which weighs recall much more heavily than precision. This is in
contrast to the F1 score which accounts for both precision and recall equally. This
approach showed substantially better results than precision-based metrics, such
as BLEU and NIST. The aforementioned Fmean metric is just a special case of the
more general Fβ measure (eq. 4.6) with β = 3. The value of β was empirically
determined by Lavie and his team, but as they say, the exact value plays little
part and what’s really important is the the additional weight placed onto recall.

Fmean = 10 π ρ
9π + ρ

= Fβ=3 (4.5)

Fβ = (1 + β2) · π ρ

π + β2 ρ
(4.6)

4.2.3 DICE Family

The DICE coefficient (Dice, 1945), also known as the Sørensen–Dice coefficient,
is a general measure of the similarity of two sets. Being so general, it has found
its way to many different areas, including natural language processing, where
it’s used to compute the similarity between two sentences represented as sets of
bigrams. The original DICE metric is defined as follows:
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Table 4.4: Extended bigrams motivational example.

Sentence DICE XDICE

“I cannot accept such a proposal.”
0.22 0.375

“I don’t accept such proposals.”

DICE(X, Y ) = 2 · |X ∩ Y |
|X|+ |Y | (4.7)

If we substitute in the set definitions of precision (eq. 4.2) and recall (eq. 4.3)
into the equation for F1 (eq. 4.4) and simplify it, we’ll get this exact equation.
In fact, DICE and F1, in the set-based context at least, are one and the same.
Despite this, it’s usefulness lies in the fact that it led to the development of two
very powerful metrics which build upon the original.

Brew et al. (1996) extend the original algorithm by introducing extended bi-
grams, hence the name XDICE (extended DICE). Extended bigrams consist
of regular bigrams with the addition of trigrams with their second element re-
moved, also known as 1-skip-2-grams (Guthrie et al., 2006). Equations 4.8 and
4.9 illustrate this more precisely.

extend(X) = bigrams(X) ∪ 1-skip-2-grams(X) (4.8)

1-skip-2-grams(X) = {(w1, w3) | (w1,_, w3) ∈ trigrams(X)} (4.9)

The XDICE metric is then simply defined as:

XDICE(X, Y ) = DICE(extend(X), extend(Y )) (4.10)

The example in the table 4.4 illustrates the advantage of utilizing extended
bigrams through two common patterns which the usual bigrams cannot capture
at all:

– word insertion: “such proposal” to “such a proposal”, and
– trigram modification: “I cannot accept” to “I don’t accept”.

Applying the original metric gives us, assuming stemming is applied beforehand,
DICE(X, Y ) = 2/9 = 0.22, since we only have a single bigram match, despite the
sentences being rather similar.4 The improved metric results in XDICE(X, Y ) =

4Stemming reduces words down to their stem by removing any morphological affixes, e.g.,
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6/9 = 0.375. While not a huge increase over the original, the observed effects get
more pronounced as the compared sentences get longer.

Brew et al. further extend XDICE with XXDICE , a variation of the algorithm
that introduces positional awareness in the form of weights based on matching
extended n-grams’ positions, instead of weighing every match equally, as was
the case previously. For each extended n-gram, the algorithm takes into account
the lesser of the two sentences’ occurrence counts. Since the original algorithm
doesn’t explicitly account for repeating n-grams, a simple greedy approach was
taken, taking into account the first non-exhasted position from the other sentence.
See algorithm 4.1 for this particular implementation.

Algorithm 4.1 XXDICE Algorithm
1: function XXDICE(X, Y )
2: X̃ ← extend(X)
3: Ỹ ← extend(Y )
4: exhausted ← array of size |Ỹ | filled with ⊥ values
5: weights ← 0
6: for i ∈ [0, |X̃|〉 do
7: j ← first index of X̃i in Ỹ , such that exhaustedj = ⊥, or else −1
8: if j ≥ 0 then
9: exhaustedj ← >
10: weights ← weights + 2

1+(i−j)2

11: return weights/(|X̃|+ |Ỹ |)

4.2.4 BLEU

Papineni et al. (2002) from IBM introduced the machine translation evaluation
measure BLEU (short for bilingual evaluation understudy), which is based on the
n-gram co-occurrences and a modification of the precision metric. The original
BLEU algorithm compares a number of candidate translations with a number of
reference translations. For the sake of simplicity, the approach presented here is
based on a 1-to-1 comparison, as that’s the way the metric was utilized in this
work.
“derive”, “derivation”, and similar all share the stem “deriv”. Stemming is the process of
removing morphological affixes from words, leaving only the word stem. () Stemming is the
process of reducing inflected or derived words to their word stem
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Table 4.5: Modified precision motivational example.

Sentence π pn

“The the the the the the the.”
1.0 0.286

“The cat is on the mat.”

pn =
∑
w∈X min {count(w,X), count(w, Y )}

|X|
(4.11)

The count(x,X) function used in the equation 4.11, as well as in many other
features in the paper, returns the number of occurrences of some value x in the
collection X.5 It can be formally defined as count(x,X) = |{x′ | x′ ∈ X, x′ = x}|.

The precision measure here is modified to not take into account just any
true positive, but instead to cap that count by the number of occurrences in the
reference sentence (eq. 4.11). A simplified version of the example from Papineni’s
work shown in the table 4.5 best showcases the improvement over the original
metric. This exhaustion effect can also be seen in XXDICE (see algorithm 4.1) as
once the indices of a matching word in either sentence are exhausted, the weight
cannot be computed and is therefore zero. Furthermore, the algorithm introduces
the notion of a brevity penalty to counteract the high precision scores of short
translations (eq. 4.13).

BLEU = BP · exp
( 1
N
·
N∑
n=1

log pn
)

(4.12)

BP =


1 if |X| > |Y |,

exp(1− |Y ||X|) otherwise.
(4.13)

4.2.5 NIST

NIST’s Doddington (2002) attempts to improve upon the IBM’s BLEU metric
by weighting the n-grams based on their information content.6 This information
content is based on the fact that the number of occurrences of an n-gram of size
n are bound to be less or equal to the number of occurrences of its sub-n-gram of
size n−1. The higher the ratio of the two occurrence counts, the more information

5Collection here signifies any iterable structure such as an array, list, set, etc.
6United States’ National Institute of Standards and Technology.

22



can be considered to be held by such an n-gram. Just as the BLEU metric, the
original purpose of the algorithm was machine translation evaluation. Unlike
the BLEU measure, and for that fact most of the measures laid out here, it is
not normalized to [0, 1], but is rather unbounded, with a higher score indicating
higher similarity.

Info(w1 . . . wn) = ld
(

count(w1 . . . wn−1, Y )
count(w1 . . . wn, Y )

)
(4.14)

The NIST score’s brevity penalty also sees improvement over the original
BLEU one, as it is much smoother and less sensitive to small variations in length.
The β factor is taken to make the brevity penalty equal to 0.5 when the length
of the hypothesis is 2⁄3 that of the reference. Applying simple mathematics, this
gives us β = log 0.5/log2 1.5.

NIST = BP ·
N∑
n=1

 1
|n-grams(X)|

∑
n-gram∈X

Info(n-gram)
 (4.15)

BP = exp
(
β log2 min

{
|X|
|Y |

, 1
})

(4.16)

4.3 Semantic Features

Semantic features utilize semantic information such as synonymy, paraphrases,
and corpus-wide frequencies to provide the system with deeper “understanding”
of the provided data.

4.3.1 TER-Plus

TER-Plus (Snover et al., 2008), also known as TERp, is a machine translation
metric based on edit distances, i.e., the number of edits required to transform a
hypothesis string to a reference string. In its original machine translation context,
the hypothesis string is a translation whose similarity is tested, while the reference
string, or a multitude of them, is the reference translation to test against. In our
plagiarism detection context, we test the hypothetical plagiariased text fragment
against its source. As with all other machine translation metrics which support
multiple reference translations, we’ll only be working with one such reference
translation.
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TER-Plus builds upon the same author’s original TER metric (Snover et al.,
2006), where TER stands for the translation edit rate. In its simplest formulation,
TER can be expressed as:

TER(h, r) = edit(h, r)
|r|

(4.17)

The edits in question, along with their particular weights, i.e., costs they account
for, include:

– word matches with a weight of zero;
– word insertions,
– word deletions,
– word substitutions, and
– shifts of words sequences, i.e., location changes; all with a weight of one.

TER-Plus further extends this by adding stem and synonym matches, as well
as paraphrase substitutions, all of which have lower weights than their word edit
counterparts. Phrasal substitution here differs from other edits in that it’s spec-
ified by a vector of weights, 〈w1, w2, w3, w4〉, which are applied as presented in
equation 4.18. Here, Pr(p1, p2) represents the probability of p1 and p2 being
paraphrases, while edit(p1, p2) is equal to the number of edits required for the
alignment of said phrases without the substitution being performed. The para-
phrases and their respective probabilities are contained in a phrase table consiting
of 14,184,361 such entries. Also, the original weights are no longer fixed, but are
instead optimized against human judgements such as fluency or adequacy, in or-
der to maximize the metric’s correlation with such judgements. Naturally, this
optimization applies to the new transformations as well, since they were never
tied to any particular weights in the first place.

cost(p1, p2) = w1

+ w2 edit(p1, p2) log(Pr(p1, p2))

+ w3 edit(p1, p2) Pr(p1, p2)

+ w4 edit(p1, p2)

(4.18)

4.3.2 METEOR

METEOR (Denkowski and Lavie, 2011) is another machine translation evaluation
metric we’ll be utilizing. The method assigns similarity scores by first aligning the
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hypothesis and the reference, and then computing similarity at sentence level. It
aligns the fragments by not only considering exact word matches, but also taking
into account stem, synonym, and paraphrase matches, not unlike the previously
described TER-Plus metric.

After obtaining the matches, a number of optimizations are performed, such
as maximizing the number of covered words, and minimizing the number of con-
tiguous matches, or chunks. Then, weighted precision and recall, dependent on
meta-parameter δ, are computed and parameterized harmonic mean Fα is calcu-
lated. Finally, a fragmentation penalty is applied as a function of the ratio of the
average number of matched words and the number of chunks (eq. 4.19), and the
final score is computed as presented in equation 4.20.

Pen = γ ·
(
ch

m

)
(4.19)

METEOR = (1− Pen) · Fα (4.20)

As with TER-Plus, the meta-parameters, α through δ and the weights wi, are
optimized against human judgements.

4.3.3 Term Frequency–Inverse Document Frequency

Term frequency–inverse document frequency, or shortly tf–idf, tries to measure
the significance of a word, or term, in relation to the document it’s contained
in. This metric is, due to its simplicity, very frequently used in many natural
language processing tasks, especially in search engines, such as the one we’ve
built previously. As can be assumed from the name, the metric is comprised of
two components, the term frequency, and the inverse document frequency. Term
frequency (eq. 4.21) measures the word’s frequency in its document, while the
inverse document frequency signifies the term’s importance through the whole
corpus of documents. Note that in the context of this work, document refers to
a single fragment.

Note that the exact flavor of tf–idf presented here is based on NLTK’s (Bird
et al., 2009) implementation. The core feature only includes the raw counts,
while the logarithmic weighing and division-by-zero prevention are specific to
this particular implementation.
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tf(t, d) = log(count(t, d)) + 1 (4.21)

idf(t,D) = log
(

|D|+ 1
|{d | d ∈ D, t ∈ d}|+ 1

)
+ 1 (4.22)

tfidf(t, d,D) = tf(t, d) · idf(t,D) (4.23)

The tf–idf metric is frequently accompanied by cosine similarity, the idea of
which is to estimate the similarity of two texts by the angle between them in the
high dimensional space of tf–idf features (see equation 4.24). Thus, instead of
taking the whole tf–idf vectors as a feature, which can often have tens of thousands
of dimensions, we can simply summarize the resulting two tf–idf vectors into this
one number.

cos(A,B) = A ·B
‖A‖ · ‖B‖

(4.24)

4.3.4 Latent Semantic Analysis

Latent semantic analysis (Landauer, 2006), also known as latent semantic in-
dexing when used in certain problems, involves reducing the dimensionality of a
term-document matrix such as tf–idf, through truncated singular value decom-
position (see eq. 4.25), and thus moving to a low-dimensional semantic space. In
the referenced equation, Xk represents our approximation of the original matrix
X in the semantic space. It’s a product of the orthogonal matrices Uk and V T

k ,
and the diagonal matrix Σk, all of which were obtained by selecting k largest
singular values and their vectors from the original U and V obtained through
SVD. This not only greatly reduces the dimension of the tf–idf matrix, which is
often unreasonably large, while also offering valuable semantic information that
we would not otherwise have found with just the tf–idf by itself. In our case, the
tf–idf matrix was used as the term-document matrix, although, as was previously
noted in 4.3.3, a more proper term would be the term-fragment matrix.

X ≈ Xk = Uk Σk V
T
k (4.25)

As with tf–idf, its possible to take the cosine similarity of two LSA vectors to
obtain their similarity in a single number. However, unlike tf–idf, we can afford
to include the whole vectors as features due to its low dimensionality. For the two
compared fragments, the suspicious text and the potential source text, we take
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their resulting LSA vectors, LSA(h) and LSA(R), and their absolute difference,
|LSA(h)− LSA(r)| as a feature, as well as their cosine similarity. This approach
is very similar to the sample vector approach of Ji and Eisenstein (2013), with
the addition of cosine similarity.

4.4 Classification

Each plag score goes through a threshold function which turns its real value,
a measure of how much something is plagiarised, into a binary category value
signifying whether it’s plagiarism or not. These binary plagiarism values are
then used as the target against which we train and test the model through the
classifier. With these categorical values, we can finally perform classification
through a support vector machine.

Support vector machines (Cortes and Vapnik, 1995) are a class of machine
learning classification methods which attempt to learn to classify examples by
identifying the hyperplanes separating the said classes in the feature space. The
method represents the high-dimensional cross product through a kernel function,
K : R×R→ R, which plays a great part in correctly separating the data. For this
particular task, the radial basis function kernel (Vert et al., 2004) was utilized.

The hyper-parameters of the SVM, C and RBF kernel’s γ, as well as the kernel
itself, were selected by performing a cross-validated grid search with exponentially
increasing values, e.g., C, γ ∈ {2× 10−6, 2× 10−4, . . . , 2× 104}. The parameters
were optimized against the weighted macro-averaged F1 metric, described later on
in section 5. In the end, the combination of parameters C = 200 and γ = 0.0002
proved to be provide the best results. SVM’s linear kernel was included in the
search alongside the RBF kernel, however it generally showed poorer results.
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5 Results

To recap, after preprocessing the dataset we end up with a several thousand
of examples, depending on the window size, ranging from 864 for the window
size of one, to 3,887 for the window size of six, which was the largest window
size tested. After the parameters were optimized, as described in section 4.4,
three-fold cross-validated scoring was performed, computing the following micro-
averaged metrics:

– precision (see statistical variant of equation 4.2);

– recall (see statistical variant of equation 4.2);

– accuracy, which simply represents the fraction of correct predictions, de-
fined as accuracy = (TP + TN )/(TP + TN + FP + FN ); and

– the F1 score (see eq. 4.4);

as well as the following macro-averaged metrics:

– the unweighted F1 score; and

– the weighted F1 score, which tries to account for imbalances in the dataset
by weighing each category’s individual scores according to the fraction of
the total population said category makes up.

Micro-averaged metrics simply compute the metric over the whole population,
while the macro-averaged ones do so for each label separately, and then average
the individual results.

5.1 Remarks

The plots in Figure 5.1 show how the six tested performance metrics change
with window size and the weighing scheme used. The horizontal axis shows the
change in window size, the vertical displays the performance metric results, while
the different lines on the plots portray the weighing schemes as described in the
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Figure 5.1: Result plots for the MST translation model.
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Figure 5.2: Comparison of window sizes’ results.
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Figure 5.3: Translation model results comparison with window size of six.
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Table 5.1: Evaluation results for the weighing scheme wx = 0.5, wy = 0.5 with the
MST model being used.

Window size Precision Recall Accuracy Micro F1 Macro F1 Weighted F1

1 0.586 0.578 0.882 0.882 0.755 0.882
2 0.675 0.792 0.785 0.785 0.771 0.788
3 0.809 0.948 0.873 0.873 0.873 0.873
4 0.839 0.982 0.885 0.885 0.879 0.882
5 0.829 0.983 0.862 0.862 0.840 0.854
6 0.847 0.981 0.864 0.864 0.821 0.854

plot’s legend. As can be seen from the plots in Figure 5.1, the plag score weighting
scheme which places equal weight on both of its components consistently achieves
the best results. The rather high results are most likely a consequence of the small
size of the dataset. Applying the same model on a larger dataset would most likely
result in lower results.

We can see in the Figure 5.2 how recall consistently increases with the window
size. However, other metrics don’t seem to be affected much after window size of
three, which is incidentally the median Wikipedia fragment size in our dataset.
Interestingly enough, Figure 5.3 shows that Microsoft’s Translator, despite sub-
jectively its translations not being nearly as natural as Google NMT’s, seems to
provide close or at times even better results than Google’s NMT. Table 5.1 shows
results for the weighting scheme wx = 0.5, wy = 0.5 accompanied with the MST
translation model, with the best results in each metric highlighted.

These results, however, don’t tell the whole story. Due to the windowing per-
formed, each sentence is covered by a number of these windows, and is therefore
included in a number of plagiarism predictions. In order to make sense of this
data, we could try to coerce nearby windows into contiguous chunks of text by
taking look at the positions of their source matches in their respective source
documents. If we have two nearby windows in the suspicious document, and we
predict that each of the windows plagiarises a source window from Wikipedia,
and these two source windows are also very close, we could combine them into a
single prediction.
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6 Conclusion

The work presented here tackles the problem of cross-lingual plagiarism detection
through use of advanced commercial translation services in an attempt to reduce
the problem down to mono-lingual plagiarism detection. A subset of Wikipedia
covering topics in machine learning was used as the dataset and from which syn-
thetic example papers were built. A local search engine based on latent semantic
analysis was built for the purpose of reducing the search space of the said dataset.
Finally, binary classification was performed on a windowed representation of the
synthetic after a number of syntactic and semantic features were extracted from
it.

The model shows good results, however due to the rather small size of the
dataset, the exact figures should be taken with a grain of salt. Evaluation of a
larger dataset would paint a clearer picture of the model’s performance.

As for future work, there is a lot that could be improved upon. The single
biggest issue with the model presented here is the lack of data from which to
generate papers. A dataset could be generated by translating parts of Wikipedia
articles through translation services, and the resulting model could be tested
against the manually translated data. This would in turn give us information on
both the quality of the translation service and how appropriate it is for cross-
lingual paper generation, and more importantly, the behaviour of our model when
exposed to a larger corpus. Another path one could explore would be automatic
generation of fragments by syntactically and semantically modifying the existing
examples.
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Appendix A
Code Snippets

In this chapter we’ll go through some details of the implementation itself, the
libraries used, and the problems, hopefully accompanied with solutions, encoun-
tered along the way.

A.1 Tokenization

The code presented in the listing A.1 enhances the NLTK’s default pre-trained
English sentence tokenizer to properly handle “i.e.” and “e.g.” abbreviations
in the text. The default behaviour incorrectly assumes that the aforementioned
abbreviations imply the end of a sentence when followed by whitespace. By
accessing the tokenizer’s private member variables, we can extend its internal list
of abbreviations to correctly handle these cases.

Listing A.1 Enhancing NLTK sentence tokenizer’s abbreviation handling.

import nltk

tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')

tokenizer._params.abbrev_types.update(['i.e', 'e.g'])

def sent_tokenize(text):

return tokenizer.tokenize(text)
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A.2 Wikipedia category pages

Obtaining the list of all pages contained under some Wikipedia category comes
down to a simple depth-first search through the category tree available in the
public Wikipedia API.1

Listing A.2 Obtaining pages contained under a Wikipedia category.

from json import loads

from requests import get

def get_pages(category):

ignored = [u'Draft', u'Portal', u'Textures', u'User'] # and many more

visited = set()

ps = set()

cs = set([category])

while cs:

visited |= cs

ps |= set(p for c in cs for p in apiCall(c, 'page'))

cs = set(c_sub for c in cs for c_sub in apiCall(c, "subcat")) - visited

return ps

def apiCall(category, type):

url = BASE_URL.format(category=category, type=type)

return (p['title'] for p in loads(get(url).text)['query']['categorymembers'])

A.3 Wikipedia Search Engine Details

The listing A.3 here accompany the search procedure description in the section
3.4. The transformations used in the listing, namely the CountVectorizer, the
TfidfTransformer, and the TruncatedSVD, all come from the Python’s scikit-
learn (Pedregosa et al., 2011) machine learning library.234 Pipelines mentioned

1https://en.wikipedia.org/w/api.php?action=query&format=json&cmlimit=500&

cmprop=title&list=categorymembers&cmtitle=Category:{category}&cmtype={type}
2http://scikit-learn.org/0.18/modules/generated/sklearn.feature_extraction.

text.CountVectorizer.html
3http://scikit-learn.org/0.18/modules/generated/sklearn.feature_extraction.

text.TfidfTransformer.html
4http://scikit-learn.org/0.18/modules/generated/sklearn.decomposition.

TruncatedSVD.html
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in the code snippets’ comments refer to scikit-learns Pipelines, a method of
chaining sequential transformations without the unnecessary boilerplate and the
bookkeeping of the intermediate results.5

Listing A.3 Keyword extraction and Wikipedia corpus search.

from numpy import argsort

from itertools import izip

from operator import itemgetter

def search(fragment, n_keywords, n_results):

# `tfidf`: pipeline of `CountVectorizer` with stemming and `TfidfTransformer`

# `tfidf_terms`: `tfidf` feature names

tfidf_vec = tfidf.transform([fragment])

tfidf_rank = sorted(

((tfidf_terms[j], x)

for j, x in izip(tfidf_vec.indices, tfidf_vec.data)),

key=itemgetter(1)

)

keywords = next(izip(*tfidf_rank[:n_keywords]))

# `index`: array of (Wikipedia file, its index)

# `lsa`: pipeline of `tfidf` and `TruncatedSVD`

cos = cosine_similarity(lsa.transform([' '.join(keywords)]), trained)[0]

# Take `n_results` entries in descending order

cos_ixs = argsort(cos)[:-(n_results + 1):-1]

return [(i, index[i], cos[i]) for i in cos_ixs[:n_results]]

A.4 METEOR and TER-Plus implementation

Due to the complexity of these two measures and the large datasets that accom-
pany them, no native implementation was attempted. Instead, the Java libraries,
released by none other than the authors themselves, were used. To accomplish
this, Python’s jnius library was used to communicate with a Java Virtual Machine
through the JNI – Java Native Interface.67

5http://scikit-learn.org/0.18/modules/generated/sklearn.pipeline.Pipeline.html
6http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
7https://pyjnius.readthedocs.io/en/latest/
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The listing A.4 shows the initial configuration of the JVM class-paths and the
memory settings recommended by the library authors.

Listing A.4 Python-JVM binding setup.

import jnius_config

def jvm_setup():

if not jnius_config.vm_running:

jnius_config.add_options('-Xms1G')

jnius_config.add_options('-Xmx3G')

jnius_config.add_classpath(METEOR_JAR_PATH)

jnius_config.add_classpath(TERP_JAR_PATH)

The METEOR library was very easy to interface to due to their clean archi-
tecture and the direct access to the scoring functions.8

Listing A.5 TER-Plus integration.

def to_trans(sentences):

return '\n'.join(s + ' ([sys][doc][' + str(i + 1) + '])'

for i, s in enumerate(sentences))

def score(self, hyp, ref):

with open(HYP_PATH, 'w') as hyp_f: hyp_f.write(to_trans(hyp))

with open(REF_PATH, 'w') as ref_f: ref_f.write(to_trans(ref))

TERPara.getOpts(['terp', '-h', HYP_PATH, '-r', REF_PATH])

output = TERPlus().run()

# `to_py_iter` transforms a Java collection into a Python iterable

results = [output.getResult(ter_id) for ter_id in to_py_iter(output.getIds())]

return sum(r.numEdits for r in results) / sum(r.numWords for r in results)

TER-Plus, on the other hand, proved to be much more difficult to cooper-
ate with.9 The library doesn’t offer any direct access to the scoring methods
and instead the arguments have to be provided in a command-line-interface-like
manner and the compared texts have to be provided via files in either the XML,

8http://www.cs.cmu.edu/~alavie/METEOR/.
9https://github.com/snover/terp.
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SGML, or their own TRANS format. To counter this, temporary files for the
reference and candidate texts were created at the start of the scoring and each of
the compared fragments were written to the files during their individual scoring
time. The otherwise unavoidable excessive output and its parsing were avoided by
directly computing the final result of the metric from the accessible intermediary
results. The exact procedure can be seen in the listing A.5.

Still, despite all the hurdles, most of which are unavoidable anyway, the pre-
sented approach is most likely an order of magnitude faster than manually invok-
ing the JVM through a shell library.
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Cross-Lingual Plagiarism Detection from Wikipedia

Abstract

Plagiarism detection is a natural language processing task with the purpose of
finding plagiarised sentences, paragraphs, or text fragments in a suspicious doc-
ument, and retrieving their sources. Cross-lingual plagiarism detection further
expands upon this by considering source works in languages other than the origi-
nal work’s language. In this particular case we consider Croatian papers with the
detection of plagiarised English sources. As Wikipedia is one of the most com-
mon plagiarism sources, it was chosen as the corpus against which to perform the
detection, in particular, a subset of its pertaining to machine learning. The work
explores a translational model which utilizes a number of syntactic and semantic
features in combination with the latent semantic analysis.

Keywords: cross-lingual plagiarism detection, latent semantic analysis, natural
language processing, machine learning, Wikipedia, Croatian language.



Međujezično otkrivanje plagijata s Wikipedije

Sažetak

Detekcija plagijata je zadatak iz područja analize prirodnih jezika koji se bavi
pronalaženjem plagijariziranih rečenica, paragrafa te komada teksta u sumnjivom
dokumentu i dohvaćanjem njihovih izvora. U ovom slučaju uzimamo u obzir
radove na hrvatskom s detekcijom plagijariziranih izvora na engleskom. Pošto je
Wikipedija jedan od najčešćih izvora plagijarizma, odabrana je kao tijelo teksta
u odnosu na koje izvršavamo detekciju, s ograničenjem na podskup Wikipedije
koji se bavi temama iz područja strojnog učenja. Ovaj rad istražuje prijevodni
model koji koristi sintaktičke i semantičke značajke u kombinaciji s latentnom
semantičkom analizom.

Ključne riječi: međujezična detekcija plagijata, latentna semantička analiza,
procesiranje prirodnih jezika, strojno učenje, Wikipedija, hrvatski jezik.


