Theses
Theses
Doria Šarić
Računalna analiza sličnosti matematičkih zadataka zadanih riječima
Computational Analysis of the Similarity of Math Word Problems
2017
Undergraduate
Jan Šnajder
FER
FER2
5328
31
EN
Cilj ovog rada bio je napraviti sustav za kategorizaciju matematičkih zadataka. Tvrtka PhotoMath prije nekoliko je godina uspješno izašla na tržiste sa istoimenom aplikacijom koja omogu ́cuje korisnicima da mobitelom skeniraju zadatak te u kratkom vremenu dobiju detaljan postupak rješavanja. PhotoMath mi je dao priliku da riješim ovaj problem i osigurao vlastiti skup podataka za ovaj rad. Svaki matematički zadatak predstavljen je stablom naredbi odnosno postupaka koji čine rješenje zadatka. Svakom zadatku cilj je pridijeliti matematičku kategoriju. Sve su kategorije ranije definirane taksonomijom te svaka kategorija predstavlja neko matematičko područje. Implementirana su dva različita pristupa. Prvi je pristup obuhvaćao pretvorbu stabla postupaka u pripadajuće vektore značajki. Vektori su bili generirani tako da sadržavaju i informacije o strukturi podataka. Nad vektorima značajki zatim se radila klasifikacija podataka. Rezultati su se pokazali poprilično uspješnima. Drugi pristup sastojao se od izgradnje matrice međusobne sličnosti svih podataka u skupu. Isprobane su dvije metode mjerenja sličnosti između stabla. Najbolje rezultate postigla je mjera sličnosti koja ovisi o broju zajedničkih naredbi saržanih u oba stabla. Druga metoda pokazala se manje učinkovitom.
The task of this thesis was to build a system that can classify computer-solvable mathematical tasks into predefined mathematical categories. A few years ago, a com- pany named PhotoMath released its homonymous app that is able to output solution steps to the user after recognizing the mathematical task scanned with a mobile phone. They provided me with the data set and the idea for this project. Each mathematical category represents some area of mathematics. The categories are hierarchically related. Each task is represented by a corresponding solver tree. Solver tree is a tree that consists of steps which explain task resolution to the user. There were two main ideas to implement. The first approach consisted of mapping solver trees from each task in the data set to a vector in the feature space. Although this approach may not be optimal, the results are quite successful. The cause of that might be that our transformation to feature space encoded the tree structure into feature vectors to the right extent. In contrast, the second approach avoids operating on feature space directly and uses kernel methods. I have implemented two kernel functions and passed their reference to Support Vector Machine. The first kernel function calculated a kernel based on the string similarities between trees encoded as strings. This method proved even more successful than the first approach with mapping solver trees to the feature space. Later on, I implemented a kernel function that generates a kernel matrix based on common subpaths in solver trees. Despite my expectations, this proved to be much less efficient.
višeklasna klasifikacija, sličnost kod stabla, kernel metode, hijerarhijska klasifikacija, kategorizacija matematičkih zadataka, strojno učenje
hierarchical multinomial classification, hierarchical data, tree similarity, mathematical categories, task categorization, classification, kernel, machine learning
6.7.2017.
Computational analysis of math word problems is an interesting research area situated at the intersection of natural language processing and symbolic computation, with applications in education and teaching. Math word problems differ in various aspects, including their type, difficulty, and wording. A computational analysis of these aspects could make it possible to group similar problems together and develop a taxonomy, which could in turn be used for more efficient teaching of math.
The topic of this thesis is the clustering of math word problems, based on the analysis of a series of each problem's features, including its wording and step-by-step solution. Study the methods for unsupervised machine learning, clustering in particular. Devise and implement a method for grouping math problems which, among others, will rely on the trace produced by the symbolic solver developed by PhotoMath. Compile a suitable test collection with multiaspect similarity judgments. Carry out an experimental evaluation of the clustering method on the test collection. Apply the method on a larger collection of math problems provided by PhotoMath, and visualize the results. All references must be cited, and all source code, documentation, executables, and datasets must be provided with the thesis.